Genomics & Bioinformatics

BIOL 497, 597
Boise State University

Spring




WHERE ARE WE?

CHAPTER 3‘ GENOME

DATABASES

ASSEMB

GENOME ANNOTATION

CHAPTER 6

GENOME
L’

STRUCTURAL

ANNOTATION

CHAPTER 1

NEXT-GENERATION

SEQUENCING  [Relaia:

TRANSCRIPTOME
ASSEMBLY

FUNCTIONAL
ANNOTATION

COMPARATIVE

GENOMICS CHAPTER 8

CHAPTER 5

CHAPTER 7

CHAPTER 9

LABORATORY
BIOINFORMATICS




OBJECTIVES

 Train students in producing a
draft nuclear genome for a non-
model organism using Illumina
data.

* The whole-genome shotgun
(WGS) sequencing dataset
published by Zhang et
al. (2017) on the orchid
species Apostasia
shenzhenica (2n=2x=68) is used
as case-study.

* Instructor has prepared a
presentation summarizing study
and applied methodology
(covered later).
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OBJECTIVES

The chapter is subdivided
into three parts:

* PART 1: Preparing/cleaning
lllumina reads for de
novo nuclear genome
assembly and inferring

1 T 1
Complexity. LETTER

doi:10.1038,
* PART 2: De novo genome
assembly. ] .
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PART 1

WET-LAB
PROCEDURES

Single end, paired end and mate pair

Steps covered in PART 1 sequencing data

K-mer Genome size

Genome Read Contamination removal ) .
estimation

& protein trimming & Quality filtering counting

databases

BIOINFORMATICS

Draft genome assembly



STEPS

5 major steps

required to prepare

reads for de novo
nuclear genome
assembly

STEPS

1. Download SRA file
v
2. Reads QC

v
3. Reads cleaning

Trim reads based on Phred scores

v

Normalize and filter reads based
on k-mer frequencies

|

Final clean-up of reads

v

De-interleave cleaned reads

»
v

4. What'’s “in” the reads?
Infer & plot reads GC contents

v

Map reads against reference
genomes

v

5. Estimate genome size &
other features

SOFTWARE

fastg-dump

FastQC

seqtk & khmer

seqtk trimfq

khmer normalize-by-median.py
khmer filter-abund.py

seqtk seq

khmer split-paired-reads.py

GC_content.pl & R

bwa, samtools,
count_fastg.sh

jellyfish, GenomeScope & R

FILE FORMATS

fastq

html

fastq

fasta, txt, pdf

fasta, fastq, bam, sa

fastq, histo, R, pdf



BIOINFORMATIC TOOLS & PUBLICATIONS

* Although all software are available on your Linux computers, the
instructor encourages you to look at their documentations and associated
papers.

* This exercise will help gaining better understanding of software’
methodologies and applicability (= why are you using these software and
functions to achieve your objectives and test your hypothesis).



Apply knowledge from Chapter 3

S1: SRA FILE

- NCBI Site map All databases ® Search

Il Sequence Read Archive

Main | [ Search [ Download [ Submit [ Software |

Studies Samples Analyses W:UL¥:1{ "8 Run Selector

WGS of Apostasia shenzhenica: 180 insert size (SRR5759389)

Metadata Analysis (alpha) Reads Download

Run Spots Bases Size

This run has 2 reads per spot:

L=90, 100%
@ Legend

Experiment Library Name Platform

SRX2959224

Apostasial80 lllumina
to BLAST

Design:
180 insert size library on lllumina

Provisional SRA

GC content
SRR5759389 84.1M 15.1Gbp 11.3G 35.5%

Published Access Type
2017-06-27 public

Strategy Source

——

Selection Layout

sequencing clusters
(= Spots)

Key statistics
N bases = N. spots * reads length (bp)

N bases = 84.1e®* 180 (90 + 90) =
15.1e°bp = 15.1Gbp

Raw genome coverage (x) = N bases /
Genome size (haploid)

Raw genome coverage (x) = 15.1e°bp /
471.0e6=32x

This means that every bp in the genome
has been sequenced 32 times.



- NCBI Site map All databases @ Search

Il Sequence Read Archive

S1 Main] | Search | Download | Submit | Sofware || Trace Arhive | Trace Assembly | Trace BLAST
* SRA FILE
[ ]

Studies Samples Analyses JULN:IGVTIIM Run Selector Provisional SRA

WGS of Apostasia shenzhenica: 180 insert size RR575938

e Use fastg-dump
(implemented in the SRA

Metadata Analysis (alpha) Reads Download

Run Spots Bases Size GC content Published Access Type
TOO”(it) to download WGS SRR5759389 84.1M 15.1Gbp 11.3G 35.5% 2017-06-27 public
raw data . This run has 2 reads per spot:
L=90, 100% L=90, 100%
* Split PE reads, but store Qtepend
bOth rea dS (Rl an d R2) in Experiment Library Name Platform Strategy Source Selection Layout
. . SRX2959224
the same file using the Apostasial80 llumina WGS ~ GENOMIC PCR PAIRED
interleave fastg format. Design:

180 insert size library on lllumina

svenbuerki@BIO-sven-lab:~/Documents/Kmers_analyses/SRA/output$ head SRR5759389_pel2.fastq
[@SRR5759389.1./1

ACTCTTACATTCGATGTATCAGTAAAGCTGAAGTTTGAAAAGCTCTAAAGAAGATGAAATAAAAAAGCATTAGGACTGGATGACATCTGA
+

@@EDFFFFHHHGHEHHHGIGIJJGGDHGIG>GGIHGGI I TGDGIIIE4BFCDGHHI IGGIHCHCHGEEA=7QE4@? ?ECHFFFDFEEEED
@SRR5759389.1. /2 Look @FastQC data

GACAGCCTTTCAGTCTTCAAAATGACATTAAATAATCTAGTGAGCTAATAAACTTCTTCATTTTCCAAGCACTTCCAAATATCTATTCAG
+

(CCFFDDDDHHGDIIIIIIJGEHGECHEGHJJGGHIGIGHGHRFHFIGIIFHIJIHIIIGIIIJHIGIIIIGIJIJIIIIIIIHHHHHHF


file:///Users/svenbuerki/Documents/Class_Genomics&Bioinfo_Spring/Laboratory/Data/SRR5759389_pe12_fastqc.html

@FastQC Report S2: READS QCS

Summary ©per base sequence content

@Basic Statistics 106 Sequence content across all bases

@Per base sequence quality iz(T:
\_) Per tile sequence quality . %c
@Per sequence quality scores 30

@Per base sequence content

@Per sequence GC content "

@Per base N content 60

k) Sequence Length Distribution

@Sequence Duplication Levels ”

@Mpresented sequences 40

~—

@@pter Content

20 1IN

10

123456789 20-24 40-44 60-64 80-84 100-104 125-129 150-154 175-179 200-204 225-229 250-251
Fosition in read (bp)



@FastQC Report

Summary

@ Basic Statistics

@Per base sequence quality

() Per tile sequence quality

@Per sequence quality scores

@Per base sequence content

@Per sequence GC content
@Per base N content

k) Sequence Length Distribution

@Sequence Duplication Levels

@Overrepresented sequences

@A_dapter Content

S2: READS QCs

@Per base sequence content

100

90

30

70

60

50

40

30

20

10

Sequence content across all bases

%T
%C
%G
What is wrong with our library?
11111 /
po——
123456789 20-24 40-44 60-64 80-84 100-104 125-129 150-154 175-179 200-204 225-229 250-251

Fosition in read (bp)



DNA — HYDROGEN BONDS

Hydrogen bonds
Nitrogenous bases:
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T-A: 2 hydrogen bonds
G-C: 3 hydrogen bonds
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S3: READS CLEANING

Reads will be cleaned/trimmed based on:

* Phred quality scores (33) to conduct a first round of
trimming.

» K-mer frequencies (k=21) to:
v'Normalize high coverage reads (higher than 100x) based on
median reads coverage.

v'Filter low abundance reads (where PCR/sequencing errors will
most likely take place).
* A final round of cleaning by removing low quality bases,
short sequences, and non-paired reads.

* Reads will be formatted for de novo genome assembly
using SOAPdenovo?.

STEPS

1. Download SRA file
v
2. Reads QC

v
3. Reads cleaning

Trim reads based on Phred scores

v

Normalize and filter reads based
on k-mer frequencies

!

Final clean-up of reads

v

De-interleave cleaned reads

»

v

4. What'’s “in” the reads?
Infer & plot reads GC contents

y

Map reads against reference
genomes

v

5. Estimate genome size &
other features



WHAT IS A K-MER?

* A k-mer is a substring of length k in a string of DNA bases or sequence.

* For a given sequence of length L, and a k-mer size of k, the total number
of k-mers possible (n) equals:

n=(L-k)+1

* For instance, for a sequence of length 9 (L), and a k-mer length of 2 (k)
the total number of k-mers equals:

n=(9-2)+1=8

* Example: All eight 2-mers of the sequence "AATTGGCCG" are AA, AT, TT,
TG, GG, GC, CC, CG



COUNTING K-MERS

* Most studies provide an estimate of sequencing coverage prior to
assembly (e.g. 32x in our example), but the real coverage distribution
will be influenced by:

v'DNA quality,
v'Library preparation,
v'Local GC content,
v'Genome complexity.

* One way of rapidly examining the coverage distribution (and genome
complexity) before assembling a reference genome is to chop your raw
sequence reads into short "k-mers" of 21 nucleotides, and count how
often you get each possible k-mer.



COUNTING K-MERS

By counting k-mers you will find out that:

v'Many sequences are extremely rare. They are either PCR or sequencing
errors or could be rare somatic mutations. Such sequences could confuse
assembly software; eliminating them can decrease subsequent memory &
CPU requirements.

v'Other sequences may exist at 10,000x coverage. These could be
pathogens/contaminants or repetitive elements. Often, there is no benefit
to retaining all copies of such sequences because the assembly software
will be confused by them; while retaining a small proportion such reads
could significantly reduce CPU, memory and space requirements (this is
especially important for this course).



K-MER GRAPH TO ESTIMATE KEY GENOMIC FEATURES

* Unique K-mers (1x; in red) are
potential PCR and/or sequencing e e s 5109
errors.

* The peak @25x represents the
haploid genome (single copy
genes). There are 1.4e’ unique
21-mers (frequency) that have
been observed 25 times
(coverage).

* The tail of the distribution
(coverage >100x) most likely
represents repetitive DNA or
contaminants.

2.0e+07

1.5e+07

n  Single copy genes

Frequency
1.0e+07

I
' True k—-mers

5.0e+06
|

Repetitive DNA or contaminants

A

>
>

0.0e+00

I I I I I
0 50 100 150 200

Coverage



K-MER GRAPH TO ESTIMATE KEY GENOMIC FEATURES

2.0e+07

* Haploid genome size (N) is
equal to:

v'N = Total numbers of k-mers /
Peak of coverage (25x)

v'N = Area under the curve / Peak
of coverage (25x)

Estimated genome size: 351.03Mb

1.5e+07

Single copy genes

Frequency
1.0e+07

I
' True k—-mers

Remember this key
concept for Step 5

5.0e+06
|

Repetitive DNA or contaminants

>
>

A

0.0e+00
|

I I I I I
0 50 100 150 200

Coverage



K-MERS & PCR ERRORS — AN EXAMPLE
* This “real” sequence "AATTGGCCG"

All 3-mers of the sequence are AAT, ATT, TTG, TGG, GGC, GCC, CCG



K-MERS & PCR ERRORS — AN EXAMPLE

* Now consider that the 4t letter (T) is replaced with a C in the sequence to
simulate a PCR error: "AATCGGCCG"

All 3-mers of this “biased” sequence are AAT, ATC, TCG, CGG, GGC, GCC, CCG.
The k-mers in bold are the incorrect 3-mers that are now unique and end up
at the beginning of the graph.

5.0e+06

0.0e+00




K-MERS & PCR ERRORS — AN EXAMPLE

* This error most likely takes place during the DNA library preparation:

TruSeq Nano DNA Library Prep Kit

—

I

100-200ng Purified R @ L£
Genomic DNA mv:l-wvv !urt

Validate Library
(Qubit & Bioanalyzer)

Fragment Paired

Genomic DNA (3} rec-tnd Adapters o
. 9 um /\mi ) [
== o 0Orit could also be a sequencing error...
— E — Type Instrument Primary Errors Single-pass Error Rate (%) Final Error Rate (%)
Amplstion Short reads 3730xl (capillary) substitution  0.1-1 0.1-1
Optional 454 All models indel 1 1
Stopping»Pdo%i‘:t:j
i lllumina All Models  substitution ~ ~0.1 ~0.1
o lon Torrent — all chips indel ~1 ~1
v P SOLiD — 5500x! A-T bias ~5 <0.1
> 4 {‘I} Long reads Oxford Nanopore deletions >4* 4*
‘ : PacBio RS Indel ~13 <1

Template New DNA DNA
DNA strand polymerase



S3: READS CLEANING

Here, a k-mer approach is applied to:

* Filter low coverage reads to minimize the effect of PCR
and/or sequencing errors on the de novo assembly.

* Normalize high coverage reads (>100x) based on

median coverage to optimize RAM requirements for

de novo assembly.

1.5e+07 2.0e+07

5.0e+06 1.0e+07

0.0e+00

PCR and/or
sequencing errors

Repetitive DNA
and/or contamina

nts

o 4
o
o
o
o
o
o
n
(=3
S

STEPS

1. Download SRA file
v
2. Reads QC

v
3. Reads cleaning

Trim reads based on Phred scores

v

Normalize and filter reads based
on k-mer frequencies

!

Final clean-up of reads

v

De-interleave cleaned reads

»

v

4. What'’s “in” the reads?
Infer & plot reads GC contents

y

Map reads against reference
genomes

v

5. Estimate genome size &
other features



S4: WHAT'S “IN” THE READS?

Here, we want to:

* Assess potential contaminants by inferring and

plotting reads GC contents.

@Per base sequence content
Sequence content across all bases
100

90

80

= | Our library is AT biased!

“|| = Is it the result of contamination?

50

40 N

30

20

0 1234567801213 1819 2425 3031 36:37 4243 4849 54-55 60-61 66-67 72.73 7879 8485 90

Position in read (bp)

2.0e+07
1

1.5e+07

Peak cov.: 25x

| True k-mers

PCR and/or
sequencing errors

Repetitive DNA

and/or contamina

nts

STEPS

1. Download SRA file
v
2. Reads QC

v
3. Reads cleaning

Trim reads based on Phred scores

v

Normalize and filter reads based
on k-mer frequencies

!

Final clean-up of reads

v

De-interleave cleaned reads

»

v

4. What'’s “in” the reads?
Infer & plot reads GC contents

y

Map reads against reference
genomes

v

5. Estimate genome size &
other features



S4: WHAT’'S “IN” THE READS?

Here, we want to:

* A GC plot from an uncontaminated library would be
expected to produce a smooth, unimodal
distribution.

* Shoulders, or in more extreme cases a bimodal
distribution, could indicate the presence of sequence
reads from an organism with a different GC content,
which is most likely a contaminant.

STEPS

1. Download SRA file
v
2. Reads QC
v
3. Reads cleaning

Trim reads based on Phred scores

v

Normalize and filter reads based
on k-mer frequencies

!

Final clean-up of reads

v

De-interleave cleaned reads

»

v

4. What'’s “in” the reads?
Infer & plot reads GC contents

y

Map reads against reference
genomes

v

5. Estimate genome size &
other features



S4: WHAT’'S “IN” THE READS?

Here, we want to:

* Map reads against reference genomes (using BWA*)
to assess proportions of reads from:
v'Nuclear genome

v'Chloroplast genome
v'Other

*BWA is a software package for mapping low-divergent
sequences against a large reference genome

STEPS

1. Download SRA file
v
2. Reads QC

v
3. Reads cleaning

Trim reads based on Phred scores

v

Normalize and filter reads based
on k-mer frequencies

!

Final clean-up of reads

v

De-interleave cleaned reads

»

v

4. What'’s “in” the reads?
Infer & plot reads GC contents

y

Map reads against reference
genomes

v

5. Estimate genome size &
other features



S4: WHAT’'S “IN” THE READS?

& NCBI  Resources & How To &

Sequence Set Browser

Project: [PEFY01

| QSearch BB List of all Projects

PEFY00000000.1 Apostasia shenzhenica

Master | (‘Contigs | [ Download | [ History |

# of Contigs:

# of Proteins:

# of Scaffolds/Chrs:
Total length:
BioProject:
BioSample:
Keywords:
Annotation:
Organism:
Biosource:

WGS:
Scaffolds:

Reference:
Submission:

12,380

21,743

2,985

322,899,837 bp

PRJNA310678

SAMNO04453324

WGS

Scaffolds

Apostasia shenzhenica — show lineage

/country = China: Shenzhen

lecotype = Shenzhen

fisolate = ASH160606

/mol_type = genomic

fissue_type = stem; leaf

PEFY01000001:PEFY01012380

KZ451883:K2454867

2,985 scaffolds, 21,743 proteins, total length is 348,733,136 bases

The Apostasia genome and the evolution of orchids : Nature 549 (7672), 379-383 (2017) — show 35 authors
Submitted (25-OCT-2017) Shenzhen Key Laboratory for Orchid Conservation and Utilization, The National Orchid
Conservation Center of China, Wangtong Road, Shenzhen 518114, China — Liu,Z.-J.

Apostasia wallichii chloroplast DNA, complete genome

GenBank: LC199394.1
FASTA Graphics

Go to: (V]
Locus LC199394 156126 bp DNA circular PLN 02-NOV-2017
DEFINITION Apostasia wallichii chloroplast DNA, complete genome.
ACCESSION LC199394
VERSION LC199394.1
KEYWORDS .
SOURCE chloroplast Apostasia wallichii
ORGANISM Apostasia wallichii
Eukaryota; Viridiplantae; Streptophyta; Embryophyta; Tracheophyta;
Spermatophyta; Magnoliophyta; Liliopsida; Asparagales; Orchidaceae;
Apostasioideae; Apostasia.
REFERENCE 1
AUTHORS Niu,2., Pan,J., zhu,S., Li,L., Xue,Q., Liu,W. and Ding,X.
TITLE Comparative Analysis of the Complete Plastomes of Apostasia
wallichii and Neuwiedia singapureana (Apostasioideae) Reveals
Different Evolutionary Dynamics of IR/SSC Boundary among
Photosynthetic Orchids
JOURNAL Front Plant Sci 8, 1713 (2017)
PUBMED 29046685
REMARK DOI:10.3389/£fpls.2017.01713
Publication Status: Online-Only
REFERENCE 2 (bases 1 to 156126)
AUTHORS Niu,Z.T., Zhu,S.Y. and Ding,X.Y.
TITLE Direct Submission
JOURNAL Submitted (28-NOV-2016) Contact:Niu Zhitao Nanjing Normal
University, College of Life Sciences; No.l, Wenyuan Road, Nanjing,
Jiangsu 210023, China
FEATURES Location/Qualifiers
source 1..156126
/organism="Apostasia wallichii"
/organelle="plastid:chloroplast"
/mol_type="genomic DNA"
/db_xref="taxon:280454"
misc feature 1..83035

/note="large single copy region (LSC)"
complement(41..1102)
/gene="psbA"



LIBRARY IS NOT CONTAMINATED

— * GC profile is shifted towards
— lower GC values.

1.5e+07
|

e Overall library contains >98%
of reads belonging to nuclear
| genome.

Al

[ I I I I |
0 20 40 60 80 100

Frequency
1.0e+07
l

5.0e+06

0.0e+00
|

GC fraction



Frequency

ESTIMATED GENOME SIZE IS CLOSE TO EXPECTED VALUE

5.0e+06 1.0e+07 1.5e+07 2.0e+07

0.0e+00

Estimated genome size: 340 Mb

n  Single copy genes

'
' True k—-mers

Repetitive DNA

v

0 50 100 150 200

Coverage

* Based on library, estimated
genome size is ca. 340 Mb.

* Not far from the value
obtained by Zhang et al.: 349
Mb

* This means that we might have
enough data to reconstruct at
least the single-copy genes,
which are sequenced ca. 20x
times.

e Validate with GenomeScope.



http://qb.cshl.edu/genomescope/

PARTS 2, 3 — DE NOVO ASSEMBLY AND VALIDATION

* Learn to set-up and perform a de novo genome assembly based on
cleaned lllumina reads using SOAPdenovo?.

* Provide theoretical knowledge on de novo genome assembly
methods. Focusing on de Bruijn graphs.

* Validate the de novo genome assembly using QUAST.



WET-LAB
PROCEDURES

BIOINFORMATICS

Sampling of high quality tissue

Single end, paired end and mate pair

Steps covered in Parts sequencing data

2-3

Genome
& protein
databases . De novo Read error Error rate
Scaffolding contig correction estimation
assembly —

Gap closing

Draft genome assembly



OVERVIEW OF THE DE NOVO ASSEMBLY WORKFLOW

Unitigs Contigs Scaffolds
| — | 1 | | | | l\/l\ |
— —
| | 1 ] Overlap/ | | [ ] Scaffold | [ |
join

Correct QUAST
misassemblies

Scaffolds Scaffolds
Chromosome | | | - |
or geneticor ————— D —
physical maps anchor ' '_' ' Gapﬂl! : a !
& polishing

Contig: A contiguous sequence of bases.

Unitig: A type of contig for which there are no competing choices in terms of internal
overlaps (they usually stop before a repeat sequence).

Scaffold: A sequence of contigs separated by gaps (Ns).



Genome assembly and annotation workflow

Reads Contigs Scaffolds
> —
Annotated diploid (2n) Diploid (2n) Pseudo haploid (n)
chromosomes chromosomes chromosomes

el — fie | — |

@+ @+ &




WHAT IS THE BEST ASSEMBLER FOR OUR DATA?

* SOAPdenovo2 vs. ALLPATHS-LG (used by Zhang et al. 2017).
* Both algorithms are adapted to lllumina reads.

* ALLPATHS-LG requires high sequencing (>100x) coverage to assemble
genome.

* ALLPATHS-LG requires a minimum of 2 paired-end libraries: one
short and one long.

- We have only 20-25x coverage (for single-copy genes) and one
library with an insert-size of max. 180 (2x 90 bp)!



SOAPDENOVO2

* This program is made up of six modules handling:
1. Read error correction.
de Bruijn graph construction.
Contig assembly.
Paired-end reads mapping (to traverse graph and build scaffolds).

Scaffold construction.
Gap closure.

O U hAEWN



SOAPDENOVOZ — SETTING UP THE ANALYSIS

 Step 1: Create a folder and copy the de-interleaved cleaned paired-
end fastq files.

» Step 2: Create a configuration file providing the settings of the
analysis.

* Step 3: Run the de novo genome assembly analysis. THIS ANALYSIS
TAKES A WHILE TO RUN!

'@ @ soap_config.txt
max_rd_len=90 # maximal read length

{ [LIB] # One [LIB] section per library

1 2vg_ins=180 # average insert size

| reverse_seq=0 # if sequence needs to be reversed

| asm_flags=3

# use for contig building and subsequent scaffolding
rank=1

# in which order the reads are used while scaffolding
q1=SRR5759389.pel.clean.fastq

q2=SRR5759389.pe2.clean.fastq



THE OVERLAP-LAYOUT-CONSENSUS (OLC) METHOD

* Traditional method used to assemble
long reads (i.e. Sanger reads).

* The assembler identifies overlaps

Rl ATCGAGAGATTCGTA
R2 TTCGTACGACTTCGA

between various long reads. l
* Based on those overlaps, it overlap
subsequen.tly merges the read ATCGAGAGATTCGTA
fragments into longer sequences.
, _ TTCGTACGACTTCGA
* This method poorly performs with
repetitive DNA regions. l

Consensus sequence
ATCGAGAGATTCGTACGACTTCGA



THE OVERLAP-LAYOUT-CONSENSUS (OLC) METHOD
Real DNA fragment [

R1

N

R ]
|

I

Assembly

e Green segments are nearly identical.
* OLC may erroneously connect the blue and orange segments, and
skip the red segment in between.



THE OVERLAP-LAYOUT-CONSENSUS (OLC) METHOD

* To properly handle repetitive DNA regions OLC programs:
1. Mask repetitive and low-complexity regions.
2. Assemble the remaining genome into many contigs and
scaffolds.

3. Then an expensive completion step is employed to merge
scaffolds into super-scaffolds and fill up the repeats.

 An OLC assembler needs to constantly guess whether slight
variation between two overlapping segments is due to repeats
or error. This can be done by using e.g. phred quality scores.



GENOMIC OLC ASSEMBLERS

« CANU: Assembler designed for high-noise single-molecule
sequencing (e.g. PacBio, Oxford Nanopore).

* MIRA: This program is capable of performing assemblies from a
wide range of sequence types (e.g. Sanger, lllumina, PacBio).

* SGA: The string graph assembler (SGA) uses a modified approach
to conventional OLC assemblers. It makes use of an FM-index to
accelerate the initial identification of read overlaps making the
OLC approach more tenable for assemblies consisting of large
numbers of reads. It has considerably lower memory overheads
than a de Bruijn graph based assembler.



DE BRUIJN GRAPH IN A NUTSHELL

To construct a de Bruijn graph of any genome with k-mer of any size:
1. The reads are split into its k-mer components.

2. k-mers are connected based on whether they have k-1 common
nucleotides.

3. De Bruijn graph is then used to reconstruct genome sequence.

de Bruijn graph

-D/ =)

NGS library Genome

/’




DE BRUIJN GRAPH IN A NUTSHELL

de Bruijn graph
NGS library Genome

e

/

=) =)

Step 1
» Split short reads into smaller pieces (k-mers).
* K-mers retain enough characteristics of the genome to allow its

reconstruction, yet are short enough to provide detailed statistics to
perform error corrections.




DE BRUIJN GRAPH IN A NUTSHELL

de Bruijn graph
NGS library Genome

/ —

=) =)

Steps 2 & 3
» Connect k-mers (using overlap of k-1) into a de Bruijn graph.
* De Bruijn graph is then used to reconstruct genome sequence.




Based on Martin & Wang (2011), Nature Reviews

DE BRUIJN DE NOVO ASSEMBLY — STEP 1 GENERATE K-MERS

a Generate all substrings of length k from the reads

ACAGC
CACAG
CCACA
CCCAC
GCCCA C
CGCCC GC
CEGEE

ACCGC

AGCGC

CAGCG

TCCTG

LTEET
CTTEE
GETTE
GCTT
GCT TG

CTG

EETGE

(€ 15CHE(C

GGTCT

TGGTC

CTGGT

GCTGG Cc

CTG TE©

CH ChyC

TETE

TGTTG
TTGTT
TTGT
TTG
TT
p5

ACCGCCCACAGCGCTTCCTGCTGGTCTCTTGTTG

AGCGC

CAGCG

TCAGC

CTCAG

CCTCA

CCCHNC

GCCCT

CEGEEE

GETTE
CGCTT

GCGCT

ETETT

CETET

TECETE

IETEET

ETTEE 1y

TT
CTT

TETT

GGTCG

TGGTC
TTGGT
GTTGG
GTTG
GTT CGTAG
GT TCGTA

G GTCGT

~ k-mers (k=5)

CGCCCTCAGCGCTTCCTCTTGTTGGTCGTAG ]—Remﬁ



DE BRUIJN DE NOVO ASSEMBLY — STEP 2 GENERATE DE BRUIN

b Generate the De Bruijn graph

Sequencing error or SNP
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Connect nodes (unique k-mers) only when they have a k-1 overlap



DE BRUIJN DE NOVO ASSEMBLY — STEP 3 COLLAPSE DE BRUIN

¢ Collapse the De Bruijn graph

Chaines of adjacent nodes in the graph are collapsed into a single node.







DE BRUIJN DE NOVO ASSEMBLY — STEP 4 TRAVERSE THE GRAPH
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Here, we can include PE information and different k-mer sizes to favor some paths over
others. This allow assembling the most likely DNA sequences

Traversing: A method for systematically visiting all nodes in a mathematical graph



DE BRUIJN DE NOVO ASSEMBLY — STEP 5 ASSEMBLE SEQ.

e Assembled isoforms =00 ------ ACCGCCCACAGCGCTTCCTGCTGGTCTCTTGTTGGTCGTAG
------ ACCGCCCACAGCGCTTCCT--------CTTGTTGGTCGTAG
ACCGCCCTCAGCGCTTCCT-------- CTTGTTGGTCGTAG

------ ACCGCCCTCAGCGCTTCCTGCTGGTCTCTTGTTGGTCGTAG

This is an example from RNA-Seq



DE BRUIJN GRAPH OF A SMALL SEQUENCE

* Infer de Bruijn graph from an
already assembled genome
seguence.

* Edges are drawn between node
pairs (k-mers) to connect nodes
with an overlap of k-1 (6).

* Simple graph since none of the
7-mers appeared more than
once in the original sequence.

Sequence ATGGAAGTCGCGGAATC

7-mers  ATGGAAG Step 1: Generate set of k-mers
TGGAAGT
GGAAGTC
GAAGTCG
AAGTCGC
AGTCGCG
GTCGCGG
TCGCGGA
CGCGGAA
GCGGAAT
CGGAATC

Step 2: Infer directed graph showing overlaps between k-mers
de Bruijn graph

ATGGAAG | TGGAAGT > GGAAGTC —* GAAGTCG [

L AAGTCGC | AGTCGCG [ GTCGCGG [—* TCGCGGA

L CGCGGAA | GCGGAAT > CGGAATC




DE BRUIJN GRAPH OF A SMALL SEQUENCE

* Here the 5'-most and 3'-most 7-
mers are identical (in blue) 2>
Creating redundancy in de
Bruijn graph

* The de Bruijn graph has one less
node due to merger of those
two identical nodes.

* A loop connects the 2 ends of
the graph.

Sequence ATGGAAGTCGATGGAAG

7-mers ATGGAAG
TGGAAGT
GGAAGTC
GAAGTCG
AAGTCGA
AGTCGAT
GTCGATG
TCGATGG
CGATGGA
GATGGAA
ATGGAAG
de Bruijn graph
» ATGGAAG > TGGAAGT —* GGAAGTC > GAAGTCG
L AAGTCGA AGTCGAT —* GTCGATG » TCGATGG
L CGATGGA » GATGGAA —l




DOUBLE-STRANDED NATURE OF GENOME

Sequence ATGGAAGTCGCTTCCAT

* Although nodes displayed in 7-mers  ATGGAAG
previous examples did not show T eAaTC
sequences from both strands, in S aeTCoC
reality, each node of a de Bruijn gt
graph is double-stranded. Teacrree

. GCTTCCA
* Here, the 3’-most 7-mer is the creeat
’ de Bruijn graph
reverse complement of the 5'-
ATGGAAG TGGAAGT GGAAGTC GAAGTCG
most 7-mer.

v

CGCTTCC » GCTTCCA

L‘ AAGTCGC

AGTCGCT ’—‘ GTCGCTT TCGCTTC ’—‘




K-MERS SHOULD BE OF ODD LENGTH

* De Bruijn assemblers use k-mers of odd length (e.g. 21, 23, 25).

* If k-mers are of even length, some k-mers can be reverse
complements of themselves (e.g. ATATATATATAT). Even k-mers will

create ambiguity in the de Bruijn graph and make its resolution
difficult.

e Palindromic k-mers can be avoided with odd k-mer size, because the
reverse complement of center nucleotide is different from the
nucleotide itself.



GENOME ASSEMBLY USING DE BRUIJN GRAPHS

De Bruijn graph-based algorithms solve the genome assembly
problem in 2 steps:

1. A de Bruijn graph is constructed from all sequencing reads.

2. The de Bruijn graph is then traversed to determine its
underlying genome sequence.




WHAT IS LOST IN DE BRUIJN GRAPHS?

 de Bruijn graphs do not preserve long-range positional information.
This means that one cannot go back from the de Bruijn graph to the
read!

* By converting a long read into a de Bruijn graph, we lose what was
already known about that part of the genome. The loss is
proportional to the length of the read.

* This issue is especially troublesome for repeat DNA regions where
long reads could help with the assembly of the genome sequence.



VARYING K-MER SIZES IN DE BRUIJN GRAPHS

* To solve the previous issue, de Bruijn assemblers will be ran
analyses with different k-mer sizes (21, 23, 25, 27, etc.) in order to
find the best assembly.

* Why does the method work? Let us present an intuitive explanation.



VARYING K-MER SIZES IN DE BRUIJN GRAPHS

* The graph can be traversed through 4 paths, but
are they all real?

ACTGGAA

\ 4

CTGGAAG

>

\ 4

TGGAAGT

GAAGTCG

\ 4

GGAAGTC

\ 4

v

ATGGAAG

\ 4

TATGGAA

\ 4

GGAAGTG

\ 4

GAAGTGA

Real sequences: ACTGGAAGTGA and TATGGAAGTCG K=7



VARYING K-MER SIZES IN DE BRUIJN GRAPHS

* The original sequences were likely from non-
repetitive regions of a genome, but they have a
common k-mer. ACTGGAA
* This common k-mer made two branches overlap, |
giving the assembler 4 paths to resolve instead of 2. | c16GAAG

>

\ 4

TGGAAG

\ 4

\ 4
v

TATGGAA ATGGAAG GGAAGTC GAAGTCG

\ 4

GGAAGTG

\ 4

GAAGTGA

Real sequences: ACTGGAAGTGA and TATGGAAGTCG K=7



VARYING K-MER SIZES IN DE BRUIJN GRAPHS

* The 2 paths will separate by changing the k-mer size

from 7 to 9.

* Increasing k-mer size resolves many spurious ACTGGAA
ambiguities, thus making the task of the assembler |
easier. CTGGAAG

\ 4

>

TGGAAG

GGAAGTC

v

ATGGAAG

\ 4

TATGGAA

\ 4

GAAGTCG

\ 4

GGAAGTG

\ 4

GAAGTGA

Real sequences: ACTGGAAGTGA and TATGGAAGTCG



MEMORY REQUIREMENT AND K-MER DISTRIBUTION

* Researchers trying to assemble genomes or transcriptomes from
NGS libraries will face these two problems:

1. How to set k-mer parameters to get the best assembly.

2. How to complete the assembly within RAM limits of the
computer.



MEMORY REQUIREMENT AND K-MER DISTRIBUTION

* If all reads are perfect (no errors), they will all match the de Bruijn
graph of the genome sequence.

* Irrespective of whether the genome is sequenced at 10x or 1000x
depth, the size of the de Bruijn graph will be limited by the size of
the underlying genome and not the volume of data.

* This means that you have to do a good job at cleaning your reads
prior to de novo assembly to minimize the impact of errors and
reduce RAM memory!



MEMORY REQUIREMENT AND K-MER DISTRIBUTION

However, we don’t live in a perfect world
and all libraries have errors.
- These errors make the assembly more
problematic and therefore more RAM
memory is required!




SELECTING THE BEST GENOME ASSEMBLER

* Sequencing technology:
v'Short reads are only appropriate for de Bruijn graph assemblers.

v'Long reads are better adapted to OLC assemblers. The Illumina 250 bp reads
(obtained with the MiSeq platform) can be analyzed with OLC assemblers
(e.g. your cholroplast genome)

* Genome size and complexity:
v'All assemblers are capable of assembling simple prokaryotic genomes.

v'Some assemblers are not capable of assembling larger genomes, which may
be due to, e.g. excessive memory requirements, or difficulties in handling
heterozygous polyploid genomes.

* Source of sequencing data: De novo assembly initially targeted at
genomic sequences, but it is now adapted to de novo transcriptome
assembly and metagenomics.



DE BRUIJN GENOME ASSEMBLERS

* VELVET: Assembler capable of producing assemblies from very
short, early NGS reads (i.e. 25bp), but it can also handle longer
(i.e. 454) reads to scaffold contig sequences. High memory needs.

* SPADES: Developed for single-cell and prokaryotic sequences. It
incorporates an initial read error correction phase to reduce
sequencing errors present in the input reads, before building a de
Bruijn (utilizing multiple sizes of k-mer).

* ABySS: Capable of assembling mammalian-sized genomes from
short reads. Built around MPI parallelization. It can make use of
paired k-mers consisting of 2 k-mers separated by a fixed distance.
It is equivalent to a single large k-mer spanning the length of the
k-mer pair.



GAP CLOSING USING LONG READS

* Sequencing biases, repetitive genomic features, genomic
polymorphism, and other complicating factors all come together
to make some regions difficult or impossible to assemble.

* The best draft genomes will contain gaps and other
imperfections.

* Traditionally, draft genomes were upgraded to “phase 3 finished”
using time-consuming and expensive Sanger-based manual
finishing processes.

* An approach is implemented in PBlJelly allowing to perform gap
closing on draft genomes using long-reads from either the PacBio
or Oxford Nanopore platforms.



