Genomics & Bioinformatics

BIOL 497, 597 Boise State University Spring

OBJECTIVES

- Train students in producing a draft nuclear genome for a nonmodel organism using Illumina data.
- The whole-genome shotgun (WGS) sequencing dataset published by Zhang et al. (2017) on the orchid species Apostasia shenzhenica (2n=2x=68) is used as case-study.
- Instructor has prepared a presentation summarizing study and applied methodology (covered later).

JETTER

doi:10.1038

Apostasia genome and the evolution of orch

Zhang^{1*}, Ke-Wei Liu^{1*}, Zhen Li^{2,3*}, Rolf Lohaus^{2,3*}, Yu-Yun Hsiao^{4,5*}, Shan-Ce Niu^{1,6}, Jie-Yu Wang^{1,7},
 ¹,^{2,3+}, Qing Xu¹, Li-Jun Chen¹, Kouki Yoshida⁸, Sumire Fujiwara⁹, Zhi-Wen Wang¹⁰, Yong-Qiang Zhang¹
 ^{*} 'itsus, ' Meina Wang¹, Guo-Hui Liu¹, Lorenzo Pecoraro¹, Hui-Xia Huang¹, Xin-Ju Xiao¹, Min Lin¹, Xin-Yi ' You-Yi Chen^{4,5}, Song-Bin Chang^{4,5}, Shingo Sakamoto⁹, Masaru Ohme-Takagi^{9,11}, Masafumi Yagi¹², ug-Yu Shen¹³, Chuan-Ming Yeh¹¹, Yi-Bo Luo⁶, Wen-Chieh Tsai^{4,5,13}, Yves Van de Peer^{2,3,14} &

OBJECTIVES

The chapter is subdivided into three parts:

- **PART 1:** Preparing/cleaning Illumina reads for *de novo* nuclear genome assembly and inferring genome size and complexity.
- **PART 2:** *De novo* genome assembly.
- **PART 3:** Validation of draft genome.

ETTER

doi:10.1038

Apostasia genome and the evolution of orch

'Zııang¹*, Ke-Wei Liu¹*, Zhen Li^{2,3}*, Rolf Lohaus^{2,3}*, Yu-Yun Hsiao^{4,5}*, Shan-Ce Niu^{1,6}, Jie-Yu Wang^{1,7},
 'n^{2,3}†, Qing Xu¹, Li-Jun Chen¹, Kouki Yoshida⁸, Sumire Fujiwara⁹, Zhi-Wen Wang¹⁰, Yong-Qiang Zhang¹
 'ditsu...' Meina Wang¹, Guo-Hui Liu¹, Lorenzo Pecoraro¹, Hui-Xia Huang¹, Xin-Ju Xiao¹, Min Lin¹, Xin-Yi '
 You-Yi Chen^{4,5}, Song-Bin Chang^{4,5}, Shingo Sakamoto⁹, Masaru Ohme-Takagi^{9,11}, Masafumi Yagi¹²,
 ¹⁶

STEPS

5 major steps required to prepare reads for *de novo* nuclear genome assembly

BIOINFORMATIC TOOLS & PUBLICATIONS

- Although all software are available on your Linux computers, the instructor encourages you to look at their documentations and associated papers.
- This exercise will help gaining better understanding of software' methodologies and applicability (= why are you using these software and functions to achieve your objectives and test your hypothesis).

Apply knowledge from Chapter 3

S1: SRA FILE

SNCBI Site map	All databa	ases 🔝	Search				
lli) Sequence R	Read Ard	chive					
Main Browse Sear	rch Downlo	bad Subm	nit Softwa	are Trace A	Archive Trace	Assembly	race BLAST
Studies Samples A	nalyses R	un Browse	er Run Se	elector Prov	visional SRA		
WGS of Apost	tasia sh	enzhen	ica: 180) insert s	ize (SRF	R5759389)	
Metadata An	alysis (alp	ha) Read	ds Dow	nload			
Run	Spots	Bases	Size	GC conte	nt Publishe	ed Access	s Туре
SRR5759389	84.1M	15.1Gbp	11.3G	35.5%	2017-06	-27 public	
This run has 2 r	eads per s	pot:					
	L=90, 1	00%				L=90, 100%	
Legend							
Experiment	Library I	Name P	latform	Strategy	Source	Selection	Layout
SRX2959224		100			0510140		DAIDED
to BLAST	Apostasi	a180 II	lumina	WGS	GENOMIC	PCR	PAIRED
Design:							
180 insert size I	ibrary on II	llumina					

Key statistics

N bases = $N.s$	spots *	reads	length	(bp)
-----------------	---------	-------	--------	------

N bases = 84.1e⁶ * 180 (90 + 90) = 15.1e⁹bp = 15.1Gbp

Raw genome coverage (x) = N bases / Genome size (haploid)

Raw genome coverage (x) = $15.1e^{9}bp / 471.0e^{6} = 32x$

This means that every bp in the genome has been sequenced 32 times.

S1: SRA FILE

- Use *fastq-dump* (implemented in the SRA Toolkit) to download WGS raw data.
- Split PE reads, but store both reads (R1 and R2) in the same file using the interleave *fastq* format.

S NCBI Site map	All databases	Search				
li) Sequence R	ead Archi	<i>ie</i>				
Main Browse Sear	ch Download	Submit Softw	are Trace A	rchive Trace /	Assembly T	race BLAST
Studies Samples A	nalyses Run E	rowser Run S	Selector Provi	isional SRA		
WGS of Apost	asia shenz	henica: 18	0 insert s	ize (SRR	5759389)	
Metadata An	alysis (alpha)	Reads Dov	vnload			
Run	Spots Bas	ses Size	GC conter	nt Publishe	d Access	s Туре
SRR5759389	84.1M 15.1	Gbp 11.3G	35.5%	2017-06-2	27 public	
This run has 2 reads per spot:						
L=90, 100% L=90, 100%						
Legend						
Experiment	Library Nam	e Platform	Strategy	Source	Selection	Layout
SRX2959224				0510140	202	DAIDED
to BLAST	Apostasia18	J IIIumina	WGS	GENOMIC	PCR	PAIRED
Design:						
180 insert size li	brary on Illum	na				
RA/output\$ head	I SRR5759389	pe12.fast	q			

 svenbuerki@BIO-sven-lab:~/Documents/Kmers_analyses/SRA/output\$ head SRR5759389_pe12.fastq

 [@SRR5759389.1./1

 ACTCTTACATTCGATGTATCAGTAAAGCTGAAGTTTGAAAAGCTCTAAAGAAGATGAAATAAAAAGCATTAGGACTGGATGACATCTGA

 +

 @@@DFFFFHHHGHEHHHGIGIJJGGDHGIG>GGIHGGIJIGDGIJJE4BFCDGHHIIGGIHCHCHGEEA=7@E4@??ECHFFFDFEEEED

 @SRR5759389.1./2

 GACAGCCTTTCAGTCTTCAAAATGACATTAAATAATCTAGTGAGCTAATAAACTTCTTCATTTTCCAAGCACTTCCAAATATCTATTCAG

 +

 @@@FFDDDDHHGDIIIIIJGEHGECHEGHJJGGHIGIGHGH@FHFIGIIFHIJIHIIIGIIIJHJGIIIIGIJJJJJIIIIIHHHHHHHF

Report **S2:** READS QCS

Summary

OPer base sequence content

Report **S2:** READS QCS

Summary

OPer base sequence content

DNA – Hydrogen bonds

T-A: 2 hydrogen bonds G-C: 3 hydrogen bonds

DNA – Hydrogen bonds

- Mitochondrial and chloroplastic genomes are enriched in AT.
- Nuclear genome is enriched in GC.
- On average, plastid DNA GCcontent is ~37%, whereas nrDNA GC-content is ~41%.
- These genome structural properties can be used to filter reads in bioinformatics pipelines and study gene trafficking between genomes.

S3: READS CLEANING

Reads will be cleaned/trimmed based on:

- Phred quality scores (33) to conduct a first round of trimming.
- K-mer frequencies (k=21) to:
 - ✓ Normalize high coverage reads (higher than 100x) based on median reads coverage.
 - ✓ Filter low abundance reads (where PCR/sequencing errors will most likely take place).
- A final round of cleaning by removing low quality bases, short sequences, and non-paired reads.
- Reads will be formatted for *de novo* genome assembly using *SOAPdenovo2*.

WHAT IS A K-MER?

- A **k-mer** is a substring of length k in a string of DNA bases or sequence.
- For a given sequence of length *L*, and a k-mer size of *k*, the total number of k-mers possible (*n*) equals:

$$n=(L-k)+1$$

• For instance, for a sequence of length 9 (*L*), and a k-mer length of 2 (*k*) the total number of k-mers equals:

$$n = (9 - 2) + 1 = 8$$

• Example: All eight 2-mers of the sequence "AATTGGCCG" are AA, AT, TT, TG, GG, GC, CC, CG

COUNTING K-MERS

- Most studies provide an estimate of sequencing coverage prior to assembly (e.g. 32x in our example), but the real coverage distribution will be influenced by:
 - ✓ DNA quality,
 - ✓ Library preparation,
 - ✓ Local GC content,
 - ✓ Genome complexity.
- One way of rapidly examining the coverage distribution (and genome complexity) before assembling a reference genome is to chop your raw sequence reads into short "k-mers" of 21 nucleotides, and count how often you get each possible k-mer.

COUNTING K-MERS

By counting k-mers you will find out that:

- ✓ Many sequences are extremely rare. They are either PCR or sequencing errors or could be rare somatic mutations. Such sequences could confuse assembly software; eliminating them can decrease subsequent memory & CPU requirements.
- ✓ Other sequences may exist at 10,000x coverage. These could be pathogens/contaminants or repetitive elements. Often, there is no benefit to retaining all copies of such sequences because the assembly software will be confused by them; while retaining a small proportion such reads could significantly reduce CPU, memory and space requirements (this is especially important for this course).

K-MER GRAPH TO ESTIMATE KEY GENOMIC FEATURES

- Unique K-mers (1x; in red) are potential PCR and/or sequencing errors.
- The peak @25x represents the haploid genome (single copy genes). There are 1.4e⁷ unique 21-mers (frequency) that have been observed 25 times (coverage).
- The tail of the distribution (coverage >100x) most likely represents repetitive DNA or contaminants.

K-mer graph to estimate key genomic features

2.0e+07 • Haploid genome size (N) is Estimated genome size: 351.03Mb equal to: Error k-mers \checkmark N = Total numbers of k-mers / l.5e+07 Peak of coverage (25x) Peak cov.: 25x Single copy genes \checkmark N = Area under the curve / Peak of coverage (25x) requency 1.0e+07 True k-mers **Remember this key** 5.0e+06 concept for Step 5 **Repetitive DNA or contaminants** 0.0e+00 50 100 150 0 200

Coverage

K-MERS & PCR ERRORS – AN EXAMPLE

• This "real" sequence "AATTGGCCG"

All 3-mers of the sequence are AAT, ATT, TTG, TGG, GGC, GCC, CCG

K-MERS & PCR ERRORS – AN EXAMPLE

 Now consider that the 4th letter (T) is replaced with a C in the sequence to simulate a PCR error: "AATCGGCCG"

All 3-mers of this "biased" sequence are AAT, **ATC**, **TCG**, **CGG**, GGC, GCC, CCG. **The k-mers in bold are the incorrect 3-mers that are now unique and end up at the beginning of the graph.**

K-MERS & PCR ERRORS – AN EXAMPLE

• This error most likely takes place during the DNA library preparation:

TruSeq Nano DNA Library Prep Kit

• Or it could also be a sequencing error...

Туре	Instrument	Primary Errors	Single-pass Error Rate (%)	Final Error Rate (%)
Short reads	3730xl (capillary)	substitution	0.1-1	0.1-1
	454 All models	indel	1	1
	Illumina All Models	substitution	~0.1	~0.1
	Ion Torrent – all chips	indel	~1	~1
	SOLiD – 5500xl	A-T bias	~5	≤0.1
Long reads	Oxford Nanopore	deletions	≥4*	4*
	PacBio RS	Indel	~13	≤1

S3: READS CLEANING

Here, a k-mer approach is applied to:

- Filter low coverage reads to minimize the effect of PCR and/or sequencing errors on the *de novo* assembly.
- Normalize high coverage reads (>100x) based on median coverage to optimize RAM requirements for *de novo* assembly.

S4: WHAT'S "IN" THE READS?

Here, we want to:

- A GC plot from an uncontaminated library would be expected to produce a smooth, unimodal distribution.
- Shoulders, or in more extreme cases a bimodal distribution, could indicate the presence of sequence reads from an organism with a different GC content, which is most likely a contaminant.

S4: WHAT'S "IN" THE READS?

Here, we want to:

- Map reads against reference genomes (using BWA*) to assess proportions of reads from:
 - ✓ Nuclear genome
 - ✓ Chloroplast genome
 - ✓Other

*BWA is a software package for mapping low-divergent sequences against a large reference genome

S4: WHAT'S "IN" THE READS?

😣 NCBI 🛛 Resources 🕑 How To 🕑

Sequence Set Browser ? Show help

Project: PEFY01 Q Search II List of all Projects

PEFY00000000.1 Apostasia shenzhenica

Master Contigs	Download History
# of Contigs:	12,380
# of Proteins:	21,743
# of Scaffolds/Chrs:	2,985
Total length:	322,899,837 bp
BioProject:	PRJNA310678
BioSample:	SAMN04453324
Keywords:	WGS
Annotation:	Scaffolds
Organism:	Apostasia shenzhenica – show lineage
Biosource:	/country = China: Shenzhen /ecotype = Shenzhen /isolate = ASH160606 /mol_type = genomic /tissue_type = stem; leaf
WGS:	PEFY01000001:PEFY01012380
Scaffolds:	KZ451883:KZ454867 2,985 scaffolds, 21,743 proteins, total length is 348,733,136 bases
Reference:	The Apostasia genome and the evolution of orchids : Nature 549 (7672), 379-383 (2017) - show 35 authors
Submission:	Submitted (25-OCT-2017) Shenzhen Key Laboratory for Orchid Conservation and Utilization, The National Orchid Conservation Center of China, Wangtong Road, Shenzhen 518114, China – Liu,ZJ.

Apostasia wallichii chloroplast DNA, complete genome

GenBank: LC199394.1

FASTA Graphics

Go to: 🖂

LOCUS	LC199394 156126 bp DNA circular PLN 02-NOV-201	7				
DEFINITION	Apostasia wallichii chloroplast DNA, complete genome.					
ACCESSION	LC199394					
VERSION	LC199394.1					
KEYWORDS						
SOURCE	chloroplast Apostasia wallichii					
ORGANISM	Apostasia wallichii					
	Eukaryota; Viridiplantae; Streptophyta; Embryophyta; Tracheophyta;					
	Spermatophyta; Magnoliophyta; Liliopsida; Asparagales; Orchidaceae	;				
	Apostasioideae; Apostasia.					
REFERENCE	1					
AUTHORS	Niu,Z., Pan,J., Zhu,S., Li,L., Xue,O., Liu,W. and Ding,X.					
TITLE	Comparative Analysis of the Complete Plastomes of Apostasia					
	wallichii and Neuwiedia singapureana (Apostasioideae) Reveals					
	Different Evolutionary Dynamics of IR/SSC Boundary among					
	Photosynthetic Orchids					
JOURNAL	Front Plant Sci 8, 1713 (2017)					
PUBMED	29046685					
REMARK	DOI:10.3389/fpls.2017.01713					
	Publication Status: Online-Only					
REFERENCE	2 (bases 1 to 156126)					
AUTHORS	Niu,Z.T., Zhu,S.Y. and Ding,X.Y.					
TITLE	Direct Submission					
JOURNAL	Submitted (28-NOV-2016) Contact:Niu Zhitao Nanjing Normal					
	University, College of Life Sciences; No.1, Wenyuan Road, Nanjing,					
	Jiangsu 210023, China					
FEATURES	Location/Qualifiers					
source	1156126					
	/organism="Apostasia wallichii"					
	/organelle="plastid:chloroplast"	/organelle="plastid:chloroplast"				
	/mol_type="genomic DNA"					
	/db_xref="taxon: <u>280454</u> "					
misc_fe	ature 183035					
	<pre>/note="large single copy region (LSC)"</pre>					
gene	complement(411102)					
	/gene="psbA"					

LIBRARY IS NOT CONTAMINATED

- GC profile is shifted towards lower GC values.
- Overall library contains >98% of reads belonging to nuclear genome.

ESTIMATED GENOME SIZE IS CLOSE TO EXPECTED VALUE

- Based on library, estimated genome size is ca. 340 Mb.
- Not far from the value obtained by Zhang *et al.*: 349 Mb
- This means that we might have enough data to reconstruct at least the single-copy genes, which are sequenced ca. 20x times.
- Validate with <u>GenomeScope</u>.

PARTS 2, 3 - DE NOVO ASSEMBLY AND VALIDATION

- Learn to set-up and perform a *de novo* genome assembly based on cleaned Illumina reads using *SOAPdenovo2*.
- Provide theoretical knowledge on *de novo* genome assembly methods. Focusing on de Bruijn graphs.
- Validate the *de novo* genome assembly using *QUAST*.

OVERVIEW OF THE DE NOVO ASSEMBLY WORKFLOW

Contig: A contiguous sequence of bases.

Unitig: A type of contig for which there are no competing choices in terms of internal

overlaps (they usually stop before a repeat sequence).

Scaffold: A sequence of contigs separated by gaps (Ns).

Genome assembly and annotation workflow

What is the best assembler for our data?

- SOAPdenovo2 vs. ALLPATHS-LG (used by Zhang et al. 2017).
- Both algorithms are adapted to Illumina reads.
- ALLPATHS-LG requires high sequencing (>100x) coverage to assemble genome.
- ALLPATHS-LG requires a minimum of 2 paired-end libraries: one short and one long.

 \rightarrow We have only 20-25x coverage (for single-copy genes) and one library with an insert-size of max. 180 (2x 90 bp)!

SOAPdenovo2

- This program is made up of six modules handling:
 - 1. Read error correction.
 - 2. de Bruijn graph construction.
 - 3. Contig assembly.
 - 4. Paired-end reads mapping (to traverse graph and build scaffolds).
 - 5. Scaffold construction.
 - 6. Gap closure.

SOAPDENOVO2 - SETTING UP THE ANALYSIS

- **Step 1:** Create a folder and copy the de-interleaved cleaned pairedend *fastq* files.
- Step 2: Create a configuration file providing the settings of the analysis.
- **Step 3:** Run the *de novo* genome assembly analysis. THIS ANALYSIS TAKES A WHILE TO RUN!

<pre>max_rd_len=90 # maximal read length [LIB] # One [LIB] section per library axg_ins=180 # average insert size reverse_seg=0 # if sequence needs to be reversed asm_flags=3 # use for contig building and subsequent scaffolding rank=1 # in which order the reads are used while scaffolding q1=SRR5759389.pe1.clean.fastq q2=SRR5759389.pe2.clean.fastq</pre>

The overlap-layout-consensus (OLC) method

- Traditional method used to assemble long reads (i.e. Sanger reads).
- The assembler identifies overlaps between various long reads.
- Based on those overlaps, it subsequently merges the read fragments into longer sequences.
- This method poorly performs with repetitive DNA regions.

The overlap-layout-consensus (OLC) method

- Green segments are nearly identical.
- OLC may erroneously connect the blue and orange segments, and skip the red segment in between.

The overlap-layout-consensus (OLC) method

• To properly handle repetitive DNA regions OLC programs:

- 1. Mask repetitive and low-complexity regions.
- 2. Assemble the remaining genome into many contigs and scaffolds.
- 3. Then an expensive completion step is employed to merge scaffolds into super-scaffolds and fill up the repeats.
- An OLC assembler needs to constantly guess whether slight variation between two overlapping segments is due to repeats or error. This can be done by using e.g. phred quality scores.

GENOMIC OLC ASSEMBLERS

- CANU: Assembler designed for high-noise single-molecule sequencing (e.g. PacBio, Oxford Nanopore).
- MIRA: This program is capable of performing assemblies from a wide range of sequence types (e.g. Sanger, Illumina, PacBio).
- SGA: The string graph assembler (SGA) uses a modified approach to conventional OLC assemblers. It makes use of an FM-index to accelerate the initial identification of read overlaps making the OLC approach more tenable for assemblies consisting of large numbers of reads. It has considerably lower memory overheads than a de Bruijn graph based assembler.

de Bruijn graph in a nutshell

To construct a de Bruijn graph of any genome with k-mer of any size:

- 1. The reads are split into its k-mer components.
- 2. k-mers are connected based on whether they have k-1 common nucleotides.
- 3. De Bruijn graph is then used to reconstruct genome sequence.

de Bruijn graph in a nutshell

Step 1

- Split short reads into smaller pieces (k-mers).
- K-mers retain enough characteristics of the genome to allow its reconstruction, yet are short enough to provide detailed statistics to perform error corrections.

de Bruijn graph in a nutshell

Steps 2 & 3

- Connect k-mers (using overlap of k-1) into a de Bruijn graph.
- De Bruijn graph is then used to reconstruct genome sequence.

Based on Martin & Wang (2011), Nature Reviews

DE BRUIJN DE NOVO ASSEMBLY – STEP 1 GENERATE K-MERS

a Generate all substrings of length k from the reads

ACAGC TCCTG GTCTC	AGCGC CTCTT GGTCG]
CACAG TTCCT GGTCT	CAGCG CCTCT TGGTC	
CCACA CTTCC TGGTC TGTTG	TCAGC TCCTC TTGGT	
CCCAC GCTTC CTGGT TTGTT	CTCAG TTCCT GTTGG	-k mors (k-5)
GCCCA CGCTT GCTGG CTTGT	CCTCA CTTCC TGTTG	K-IIIers (K-J)
CGCCC GCGCT TGCTG TCTTG	CCCTC GCTTC TTGTT CGTAG	
CCGCC AGCGC CTGCT CTCTT	GCCCT CGCTT CTTGT TCGTA	
ACCGC CAGCG CCTGC TCTCT	CGCCC GCGCT TCTTG GTCGT	
ACCGCCCACAGCGCTTCCTGCTGGTCTCTTGTTG	CGCCCTCAGCGCTTCCTCTTGTTGGTCGTAG	- Reads

DE BRUIJN DE NOVO ASSEMBLY – STEP 2 GENERATE DE BRUIJN

Connect nodes (unique k-mers) only when they have a k-1 overlap

DE BRUIJN DE NOVO ASSEMBLY – STEP 3 COLLAPSE DE BRUIJN

Chaines of adjacent nodes in the graph are collapsed into a single node.

b Generate the De Bruijn graph

DE BRUIJN DE NOVO ASSEMBLY – STEP 4 TRAVERSE THE GRAPH

Here, we can include PE information and different k-mer sizes to favor some paths over others. This allow assembling the most likely DNA sequences

Traversing: A method for systematically visiting all nodes in a mathematical graph

DE BRUIJN DE NOVO ASSEMBLY – STEP 5 ASSEMBLE SEQ.

e Assembled isoforms

 ACCGCCCACAGCGCTTCCTGCTGGTC	TCTTGTTC	GGTCGTAG
 ACCGCCCACAGCGCTTCCT	- CTTGTTC	GGT <mark>C</mark> GTAG
 ACCGCCCTCAGCGCTTCCT	- CTTGTTC	GGTCGTAG
 ACCGCCCTCAGCGCTTCCTGCTGGTC	TCTTGTTC	GGT <mark>C</mark> GTAG

This is an example from RNA-Seq

DE BRUIJN GRAPH OF A SMALL SEQUENCE

- Infer de Bruijn graph from an already assembled genome sequence.
- Edges are drawn between node pairs (k-mers) to connect nodes with an overlap of k-1 (6).
- Simple graph since none of the 7-mers appeared more than once in the original sequence.

Sequence	ATGGAAGTCGCGGAATC
----------	-------------------

7-mers	ATGGAAG TGGAAGT	Step 1: Generate set of k-mers
	GGAAGTC	
	GAAGTCG	
	AAGTCGC	
	AGTCGCG	ì
	GTCGCG	G
	TCGCO	GGA
	CGCO	GGAA
	GC	GGAAT
	C	GGAATC

DE BRUIJN GRAPH OF A SMALL SEQUENCE

- Here the 5'-most and 3'-most 7mers are identical (in blue) →
 Creating redundancy in de Bruijn graph
- The de Bruijn graph has one less node due to merger of those two identical nodes.
- A loop connects the 2 ends of the graph.

DOUBLE-STRANDED NATURE OF GENOME

- Although nodes displayed in previous examples did not show sequences from both strands, in reality, each node of a de Bruijn graph is double-stranded.
- Here, the 3'-most 7-mer is the reverse complement of the 5'most 7-mer.

K-MERS SHOULD BE OF ODD LENGTH

- De Bruijn assemblers use k-mers of odd length (e.g. 21, 23, 25).
- If k-mers are of even length, some k-mers can be reverse complements of themselves (e.g. ATATATATATAT). Even k-mers will create ambiguity in the de Bruijn graph and make its resolution difficult.
- Palindromic k-mers can be avoided with odd k-mer size, because the reverse complement of center nucleotide is different from the nucleotide itself.

Genome assembly using de Bruijn graphs

De Bruijn graph-based algorithms solve the genome assembly problem in 2 steps:

- 1. A **de Bruijn graph is constructed** from all sequencing reads.
- 2. The de Bruijn graph is then traversed to determine its underlying genome sequence.

WHAT IS LOST IN DE BRUIJN GRAPHS?

- de Bruijn graphs do not preserve long-range positional information. This means that one cannot go back from the de Bruijn graph to the read!
- By converting a long read into a de Bruijn graph, we lose what was already known about that part of the genome. The loss is proportional to the length of the read.
- This issue is especially troublesome for repeat DNA regions where long reads could help with the assembly of the genome sequence.

- To solve the previous issue, de Bruijn assemblers will be ran analyses with different k-mer sizes (21, 23, 25, 27, etc.) in order to find the best assembly.
- Why does the method work? Let us present an intuitive explanation.

• The graph can be traversed through 4 paths, but are they all real?

Real sequences: ACTGGAAGTGA and TATGGAAGTCG K=7

Real sequences: ACTGGAAGTGA and TATGGAAGTCG K=7

- The 2 paths will separate by changing the k-mer size from 7 to 9.
- Increasing k-mer size resolves many spurious ambiguities, thus making the task of the assembler easier.
 TATGGAA
 TATGGAAG
 TGGAAGT
 GGAAGTC
 GGAAGTC
 GGAAGTC

Real sequences: ACTGGAAGTGA and TATGGAAGTCG

GAAGTGA

MEMORY REQUIREMENT AND K-MER DISTRIBUTION

- Researchers trying to assemble genomes or transcriptomes from NGS libraries will face these two problems:
 - 1. How to set k-mer parameters to get the best assembly.
 - 2. How to complete the assembly within RAM limits of the computer.

MEMORY REQUIREMENT AND K-MER DISTRIBUTION

- If all reads are perfect (no errors), they will all match the de Bruijn graph of the genome sequence.
- Irrespective of whether the genome is sequenced at 10x or 1000x depth, the size of the de Bruijn graph will be limited by the size of the underlying genome and not the volume of data.
- This means that you have to do a good job at cleaning your reads prior to de novo assembly to minimize the impact of errors and reduce RAM memory!

MEMORY REQUIREMENT AND K-MER DISTRIBUTION

However, we don't live in a perfect world and all libraries have errors.
→ These errors make the assembly more problematic and therefore more RAM memory is required!

Selecting the best genome assembler

Sequencing technology:

- ✓ Short reads are only appropriate for de Bruijn graph assemblers.
- ✓ Long reads are better adapted to OLC assemblers. The Illumina 250 bp reads (obtained with the MiSeq platform) can be analyzed with OLC assemblers (e.g. your cholroplast genome)

• Genome size and complexity:

- ✓ All assemblers are capable of assembling simple prokaryotic genomes.
- ✓ Some assemblers are not capable of assembling larger genomes, which may be due to, e.g. excessive memory requirements, or difficulties in handling heterozygous polyploid genomes.
- Source of sequencing data: De novo assembly initially targeted at genomic sequences, but it is now adapted to de novo transcriptome assembly and metagenomics.

de Bruijn genome assemblers

- VELVET: Assembler capable of producing assemblies from very short, early NGS reads (i.e. 25bp), but it can also handle longer (i.e. 454) reads to scaffold contig sequences. **High memory needs**.
- **SPADES:** Developed for single-cell and **prokaryotic** sequences. It incorporates an initial read error correction phase to reduce sequencing errors present in the input reads, before building a de Bruijn (utilizing multiple sizes of k-mer).
- **ABySS:** Capable of assembling **mammalian-sized** genomes from short reads. Built around MPI parallelization. It can make use of paired k-mers consisting of 2 k-mers separated by a fixed distance. It is equivalent to a single large k-mer spanning the length of the k-mer pair.

$G\ensuremath{\mathsf{GAP}}$ closing using long reads

- Sequencing biases, repetitive genomic features, genomic polymorphism, and other complicating factors all come together to make some regions difficult or impossible to assemble.
- The best draft genomes will contain gaps and other imperfections.
- Traditionally, draft genomes were upgraded to "phase 3 finished" using time-consuming and expensive Sanger-based manual finishing processes.
- An approach is implemented in PBJelly allowing to perform gap closing on draft genomes using long-reads from either the PacBio or Oxford Nanopore platforms.