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OBJECTIVES

• Train students in producing a 
draft nuclear genome for a non-
model organism using Illumina 
data.

• The whole-genome shotgun 
(WGS) sequencing dataset 
published by Zhang et 
al. (2017) on the orchid 
species Apostasia 
shenzhenica (2n=2x=68) is used 
as case-study.

• Instructor has prepared a 
presentation summarizing study 
and applied methodology 
(covered later).



OBJECTIVES

The chapter is subdivided 
into three parts:
• PART 1: Preparing/cleaning 

Illumina reads for de 
novo nuclear genome 
assembly and inferring 
genome size and 
complexity.

• PART 2: De novo genome 
assembly.

• PART 3: Validation of draft 
genome.
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SOFTWARE

FastQC

fastq-dump

seqtk trimfq

seqtk & khmer

khmer normalize-by-median.py
khmer filter-abund.py

seqtk seq

khmer split-paired-reads.py

jellyfish, GenomeScope & R

GC_content.pl & R

FILE FORMATS

fastq

html

fastq

fasta, fastq, bam, sa

fastq, histo, R, pdf

bwa, samtools, 
count_fastq.sh 

fasta, txt, pdf

1. Download SRA file

2. Reads QC

STEPS

3. Reads cleaning
Trim reads based on Phred scores

Normalize and filter reads based 
on k-mer frequencies

Final clean-up of reads

De-interleave cleaned reads

5. Es:mate genome size & 
other features

4. What’s “in” the reads?
Infer & plot reads GC contents

Map reads against reference 
genomes

STEPS
5 major steps 
required to prepare 
reads for de novo 
nuclear genome 
assembly 



BIOINFORMATIC TOOLS & PUBLICATIONS
• Although all so9ware are available on your Linux computers, the 

instructor encourages you to look at their documenta@ons and associated 
papers.
• This exercise will help gaining beCer understanding of so9ware’ 

methodologies and applicability (= why are you using these so9ware and 
func@ons to achieve your objec@ves and test your hypothesis). 



S1: SRA FILE
Illumina 
sequencing clusters 
(= Spots)

Key statistics

N bases = N. spots * reads length (bp)

N bases = 84.1e6 * 180 (90 + 90) = 
15.1e9bp = 15.1Gbp

Raw genome coverage (x) = N bases / 
Genome size (haploid)

Raw genome coverage (x) = 15.1e9bp / 
471.0e6 = 32x

This means that every bp in the genome 
has been sequenced 32 times.

Apply knowledge from Chapter 3



S1: SRA FILE
• Use fastq-dump 

(implemented in the SRA 
Toolkit) to download WGS 
raw data.
• Split PE reads, but store 

both reads (R1 and R2) in 
the same file using the 
interleave fastq format.

Look @FastQC data

file:///Users/svenbuerki/Documents/Class_Genomics&Bioinfo_Spring/Laboratory/Data/SRR5759389_pe12_fastqc.html


S2: READS QCS



S2: READS QCS

What is wrong with our library?



T-A: 2 hydrogen bonds
G-C: 3 hydrogen bonds

DNA – HYDROGEN BONDS



• Mitochondrial and chloroplastic 
genomes are enriched in AT.

• Nuclear genome is enriched in 
GC. 

• On average, plastid DNA GC-
content is ~37%, whereas 
nrDNA GC-content is ~41%. 

• These genome structural 
properties can be used to filter 
reads in bioinformatics 
pipelines and study gene 
trafficking between genomes.

DNA – HYDROGEN BONDS ca. 100 chloroplasts 
per cell in Arabidopsis 

and wheat



S3: READS CLEANING 
Reads will be cleaned/trimmed based on:
• Phred quality scores (33) to conduct a first round of 

trimming.
• K-mer frequencies (k=21) to:

üNormalize high coverage reads (higher than 100x) based on 
median reads coverage.

üFilter low abundance reads (where PCR/sequencing errors will 
most likely take place).

• A final round of cleaning by removing low quality bases, 
short sequences, and non-paired reads.
• Reads will be formaHed for de novo  genome assembly 

using SOAPdenovo2.

1. Download SRA file

2. Reads QC

STEPS

3. Reads cleaning
Trim reads based on Phred scores

Normalize and filter reads based 
on k-mer frequencies

Final clean-up of reads

De-interleave cleaned reads

5. Estimate genome size & 
other features

4. What’s “in” the reads?
Infer & plot reads GC contents

Map reads against reference 
genomes



WHAT IS A K-MER?
• A k-mer is a substring of length k in a string of DNA bases or sequence. 
• For a given sequence of length L, and a k-mer size of k, the total number 

of k-mers possible (n) equals:
   n = (L – k) + 1 
• For instance, for a sequence of length 9 (L), and a k-mer length of 2 (k) 

the total number of k-mers equals:
   n = (9 – 2) + 1 = 8
• Example: All eight 2-mers of the sequence "AATTGGCCG" are AA, AT, TT, 

TG, GG, GC, CC, CG



COUNTING K-MERS
• Most studies provide an es@mate of sequencing coverage prior to 

assembly (e.g. 32x in our example), but the real coverage distribu@on 
will be influenced by: 
üDNA quality, 
üLibrary preparaLon, 
üLocal GC content,
üGenome complexity.

• One way of rapidly examining the coverage distribu@on (and genome 
complexity) before assembling a reference genome is to chop your raw 
sequence reads into short "k-mers" of 21 nucleo@des, and count how 
o9en you get each possible k-mer. 



COUNTING K-MERS
By counting k-mers you will find out that: 

üMany sequences are extremely rare. They are either PCR or sequencing 
errors or could be rare somatic mutations. Such sequences could confuse 
assembly software; eliminating them can decrease subsequent memory & 
CPU requirements.

üOther sequences may exist at 10,000x coverage. These could be 
pathogens/contaminants or repetitive elements. Often, there is no benefit 
to retaining all copies of such sequences because the assembly software 
will be confused by them; while retaining a small proportion such reads 
could significantly reduce CPU, memory and space requirements (this is 
especially important for this course).



K-MER GRAPH TO ESTIMATE KEY GENOMIC FEATURES
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• Unique K-mers (1x; in red) are 
potential PCR and/or sequencing 
errors.
• The peak @25x represents the 

haploid genome (single copy 
genes). There are 1.4e7 unique 
21-mers (frequency) that have 
been observed 25 times 
(coverage).
• The tail of the distribution 

(coverage >100x) most likely 
represents repetitive DNA or 
contaminants. 

Single copy genes

Repetitive DNA or contaminants



K-MER GRAPH TO ESTIMATE KEY GENOMIC FEATURES
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• Haploid genome size (N) is 
equal to:
üN = Total numbers of k-mers / 

Peak of coverage (25x)
üN = Area under the curve / Peak 

of coverage (25x)

Single copy genes

Repetitive DNA or contaminants

Remember this key 
concept for Step 5



K-MERS & PCR ERRORS – AN EXAMPLE
• This “real” sequence "AATTGGCCG" 

All 3-mers of the sequence are AAT, ATT, TTG, TGG, GGC, GCC, CCG



K-MERS & PCR ERRORS – AN EXAMPLE
• Now consider that the 4th leIer (T) is replaced with a C in the sequence to 

simulate a PCR error: "AATCGGCCG"

All 3-mers of this “biased” sequence are AAT, ATC, TCG, CGG, GGC, GCC, CCG. 
The k-mers in bold are the incorrect 3-mers that are now unique and end up 
at the beginning of the graph.
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K-MERS & PCR ERRORS – AN EXAMPLE
• This error most likely takes place during the DNA library preparation:

Type Instrument Primary	Errors Single-pass	Error	Rate	(%) Final	Error	Rate	(%)
3730xl	(capillary) substitution 0.1-1 0.1-1

454	All	models indel 1 1

Illumina	All	Models substitution ~0.1 ~0.1

Ion	Torrent	–	all	chips indel ~1 ~1

SOLiD	–	5500xl A-T	bias ~5 ≤0.1

Oxford	Nanopore deletions ≥4* 4*
PacBio	RS Indel ~13 ≤1

Short	reads

Long	reads

• Or it could also be a sequencing error…



S3: READS CLEANING 
Here, a k-mer approach is applied to:
• Filter low coverage reads to minimize the effect of PCR 

and/or sequencing errors on the de novo assembly.
• Normalize high coverage reads (>100x) based on 

median coverage to optimize RAM requirements for 
de novo assembly.

1. Download SRA file

2. Reads QC

STEPS

3. Reads cleaning
Trim reads based on Phred scores

Normalize and filter reads based 
on k-mer frequencies

Final clean-up of reads

De-interleave cleaned reads

5. Estimate genome size & 
other features

4. What’s “in” the reads?
Infer & plot reads GC contents

Map reads against reference 
genomes
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S4: WHAT’S “IN” THE READS?
Here, we want to:
• Assess potential contaminants by inferring and 

plotting reads GC contents.

1. Download SRA file

2. Reads QC

STEPS

3. Reads cleaning
Trim reads based on Phred scores

Normalize and filter reads based 
on k-mer frequencies

Final clean-up of reads

De-interleave cleaned reads

5. Estimate genome size & 
other features

4. What’s “in” the reads?
Infer & plot reads GC contents

Map reads against reference 
genomes
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Our library is AT biased!
à Is it the result of contamina:on?



S4: WHAT’S “IN” THE READS?
Here, we want to:
• A GC plot from an uncontaminated library would be 

expected to produce a smooth, unimodal 
distribution. 
• Shoulders, or in more extreme cases a bimodal 

distribution, could indicate the presence of sequence 
reads from an organism with a different GC content, 
which is most likely a contaminant.

1. Download SRA file

2. Reads QC

STEPS

3. Reads cleaning
Trim reads based on Phred scores

Normalize and filter reads based 
on k-mer frequencies

Final clean-up of reads

De-interleave cleaned reads

5. Estimate genome size & 
other features

4. What’s “in” the reads?
Infer & plot reads GC contents

Map reads against reference 
genomes



S4: WHAT’S “IN” THE READS?
Here, we want to:
• Map reads against reference genomes (using BWA*) 

to assess propor@ons of reads from:
üNuclear genome
üChloroplast genome
üOther

1. Download SRA file

2. Reads QC

STEPS

3. Reads cleaning
Trim reads based on Phred scores

Normalize and filter reads based 
on k-mer frequencies

Final clean-up of reads

De-interleave cleaned reads

5. Estimate genome size & 
other features

4. What’s “in” the reads?
Infer & plot reads GC contents

Map reads against reference 
genomes

*BWA is a so_ware package for mapping low-divergent 
sequences against a large reference genome



S4: WHAT’S “IN” THE READS?



Histogram of GC content per reads
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• GC profile is shi9ed towards 
lower GC values.
• Overall library contains >98% 

of reads belonging to nuclear 
genome.



ESTIMATED GENOME SIZE IS CLOSE TO EXPECTED VALUE
• Based on library, estimated 

genome size is ca. 340 Mb.
• Not far from the value 

obtained by Zhang et al.: 349 
Mb
• This means that we might have 

enough data to reconstruct at 
least the single-copy genes, 
which are sequenced ca. 20x 
times.
• Validate with GenomeScope.
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http://qb.cshl.edu/genomescope/


PARTS 2, 3 – DE NOVO ASSEMBLY AND VALIDATION
• Learn to set-up and perform a de novo genome assembly based on 

cleaned Illumina reads using SOAPdenovo2. 

• Provide theoretical knowledge on de novo genome assembly 
methods. Focusing on de Bruijn graphs. 

• Validate the de novo genome assembly using QUAST.
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RNA extraction Fragmenta+on Fragment size 
selection

cDNA fragment 
amplification

High-throughput 
cDNA sequencing

Purify 
RNA

RNA to cDNA

Read
trimming

Contamination removal 
& Quality filtering

Check assembly 
quality

De novo assembly
of transcript

Similarity 
search

Align clean reads 
to transcript

Func+onal 
annota+on

Expression 
quan+fica+on

Genome 
& protein 
databases

Steps covered in Parts 
2-3



Unitigs Contigs

Overlap	/	
join

Scaffolds

Scaffold

Scaffolds

Correct
misassemblies

Scaffolds

Gapfill
&	polishing

anchor

Chromosome
or	genetic	or	
physical	maps

Con:g: A con`guous sequence of bases.
Uni:g: A type of con`g for which there are no compe`ng choices in terms of internal 
overlaps (they usually stop before a repeat sequence).
Scaffold: A sequence of con`gs separated by gaps (Ns).

OVERVIEW OF THE DE NOVO ASSEMBLY WORKFLOW

QUAST



Reads ConLgs Scaffolds

Pseudo haploid (n) 
chromosomes

⚤

Diploid (2n) 
chromosomes

♀+♂

Annotated diploid (2n) 
chromosomes

♀+♂
♂

Genome assembly and annotaLon workflow



WHAT IS THE BEST ASSEMBLER FOR OUR DATA?
• SOAPdenovo2 vs. ALLPATHS-LG (used by Zhang et al. 2017).
• Both algorithms are adapted to Illumina reads.
• ALLPATHS-LG requires high sequencing (>100x) coverage to assemble 

genome. 
• ALLPATHS-LG requires a minimum of 2 paired-end libraries: one 

short and one long.
 à We have only 20-25x coverage (for single-copy genes) and one 
library with an insert-size of max. 180 (2x 90 bp)! 



• This program is made up of six modules handling:
1. Read error correction.
2. de Bruijn graph construction.
3. Contig assembly.
4. Paired-end reads mapping (to traverse graph and build scaffolds).
5. Scaffold construction.
6. Gap closure.

SOAPDENOVO2



SOAPDENOVO2 – SETTING UP THE ANALYSIS
• Step 1: Create a folder and copy the de-interleaved cleaned paired-

end fastq files.
• Step 2: Create a configuration file providing the settings of the 

analysis.
• Step 3: Run the de novo genome assembly analysis. THIS ANALYSIS 

TAKES A WHILE TO RUN!



THE OVERLAP-LAYOUT-CONSENSUS (OLC) METHOD

ATCGAGAGATTCGTA
TTCGTACGACTTCGA

R1
R2

ATCGAGAGATTCGTA
TTCGTACGACTTCGA

overlap

ATCGAGAGATTCGTACGACTTCGA
Consensus	sequence

• Tradi@onal method used to assemble 
long reads (i.e. Sanger reads).
• The assembler iden@fies overlaps 

between various long reads. 
• Based on those overlaps, it 

subsequently merges the read 
fragments into longer sequences.
• This method poorly performs with 

repe@@ve DNA regions.



THE OVERLAP-LAYOUT-CONSENSUS (OLC) METHOD

R1

R2

Real	DNA	fragment

Assembly

• Green segments are nearly identical.
• OLC may erroneously connect the blue and orange segments, and 

skip the red segment in between.



THE OVERLAP-LAYOUT-CONSENSUS (OLC) METHOD
• To properly handle repeTTve DNA regions OLC programs:

1. Mask repe@@ve and low-complexity regions. 
2. Assemble the remaining genome into many con@gs and 

scaffolds. 
3. Then an expensive comple@on step is employed to merge 

scaffolds into super-scaffolds and fill up the repeats.
• An OLC assembler needs to constantly guess whether slight 

variaTon between two overlapping segments is due to repeats 
or error. This can be done by using e.g. phred quality scores. 



GENOMIC OLC ASSEMBLERS
• CANU: Assembler designed for high-noise single-molecule 

sequencing (e.g. PacBio, Oxford Nanopore).
• MIRA: This program is capable of performing assemblies from a 

wide range of sequence types (e.g. Sanger, Illumina, PacBio). 
• SGA: The string graph assembler (SGA) uses a modified approach 

to conventional OLC assemblers. It makes use of an FM-index to 
accelerate the initial identification of read overlaps making the 
OLC approach more tenable for assemblies consisting of large 
numbers of reads. It has considerably lower memory overheads 
than a de Bruijn graph based assembler. 



DE BRUIJN GRAPH IN A NUTSHELL

NGS	library
de	Bruijn graph

Genome

To construct a de Bruijn graph of any genome with k-mer of any size:
1. The reads are split into its k-mer components.
2. k-mers are connected based on whether they have k-1 common 

nucleo@des.
3. De Bruijn graph is then used to reconstruct genome sequence.



DE BRUIJN GRAPH IN A NUTSHELL

NGS	library
de	Bruijn graph

Genome

Step 1
• Split short reads into smaller pieces (k-mers).
• K-mers retain enough characteristics of the genome to allow its 

reconstruction, yet are short enough to provide detailed statistics to 
perform error corrections.



DE BRUIJN GRAPH IN A NUTSHELL

NGS	library
de	Bruijn graph

Genome

Steps 2 & 3
• Connect k-mers (using overlap of k-1) into a de Bruijn graph.
• De Bruijn graph is then used to reconstruct genome sequence.



DE BRUIJN DE NOVO ASSEMBLY – STEP 1 GENERATE K-MERS

Based on Martin & Wang (2011), Nature Reviews



Connect nodes (unique k-mers) only when they have a k-1 overlap

DE BRUIJN DE NOVO ASSEMBLY – STEP 2 GENERATE DE BRUIJN



Chaines of adjacent nodes in the graph are collapsed into a single node.

DE BRUIJN DE NOVO ASSEMBLY – STEP 3 COLLAPSE DE BRUIJN





Here, we can include PE information and different k-mer sizes to favor some paths over 
others. This allow assembling the most likely DNA sequences

DE BRUIJN DE NOVO ASSEMBLY – STEP 4 TRAVERSE THE GRAPH

Traversing: A method for systematically visiting all nodes in a mathematical graph



DE BRUIJN DE NOVO ASSEMBLY – STEP 5 ASSEMBLE SEQ.

This is an example from RNA-Seq



DE BRUIJN GRAPH OF A SMALL SEQUENCE
• Infer de Bruijn graph from an 

already assembled genome 
sequence.
• Edges are drawn between node 

pairs (k-mers) to connect nodes 
with an overlap of k-1 (6).
• Simple graph since none of the 

7-mers appeared more than 
once in the original sequence.

ATGGAAGTCGCGGAATCSequence
7-mers ATGGAAG

TGGAAGT
GGAAGTC
GAAGTCG
AAGTCGC
AGTCGCG
GTCGCGG
TCGCGGA
CGCGGAA
GCGGAAT
CGGAATC

ATGGAAG TGGAAGT GGAAGTC GAAGTCG

AAGTCGC AGTCGCG GTCGCGG TCGCGGA

CGCGGAA GCGGAAT CGGAATC

de	Bruijn graph	

Step 1: Generate set of k-mers

Step 2: Infer directed graph showing overlaps between k-mers



ATGGAAGTCGATGGAAGSequence
7-mers ATGGAAG

TGGAAGT
GGAAGTC
GAAGTCG

ATGGAAG TGGAAGT GGAAGTC GAAGTCG

AAGTCGA AGTCGAT GTCGATG TCGATGG

CGATGGA GATGGAA

de	Bruijn graph	

AAGTCGA

ATGGAAG

AGTCGAT
GTCGATG
TCGATGG
CGATGGA
GATGGAA

DE BRUIJN GRAPH OF A SMALL SEQUENCE
• Here the 5ʹ-most and 3'-most 7-

mers are identical (in blue) à 
Creating redundancy in de 
Bruijn graph
• The de Bruijn graph has one less 

node due to merger of those 
two identical nodes. 
• A loop connects the 2 ends of 

the graph. 



DOUBLE-STRANDED NATURE OF GENOME
ATGGAAGTCGCTTCCATSequence

7-mers ATGGAAG
TGGAAGT
GGAAGTC
GAAGTCG
AAGTCGC

ATGGAAG TGGAAGT GGAAGTC GAAGTCG

de	Bruijn graph	

AGTCGCT
GTCGCTT
TCGCTTC
CGCTTCC
GCTTCCA
CTTCCAT

TACCTTC TGGAAGT GGAAGTC GAAGTCG

AAGTCGC AGTCGCT GTCGCTT

TGGAAGT GGAAGT

TCGCTTC

GAGTCG

CGCTTCC

GGAAGT

GCTTCCA

GAGTCG

• Although nodes displayed in 
previous examples did not show 
sequences from both strands, in 
reality, each node of a de Bruijn 
graph is double-stranded.
• Here, the 3ʹ-most 7-mer is the 

reverse complement of the 5ʹ-
most 7-mer. 



K-MERS SHOULD BE OF ODD LENGTH
• De Bruijn assemblers use k-mers of odd length (e.g. 21, 23, 25).
• If k-mers are of even length, some k-mers can be reverse 

complements of themselves (e.g. ATATATATATAT). Even k-mers will 
create ambiguity in the de Bruijn graph and make its resoluTon 
difficult.
• Palindromic k-mers can be avoided with odd k-mer size, because the 

reverse complement of center nucleo@de is different from the 
nucleo@de itself.



GENOME ASSEMBLY USING DE BRUIJN GRAPHS
De Bruijn graph-based algorithms solve the genome assembly 
problem in 2 steps: 

1. A de Bruijn graph is constructed from all sequencing reads.
2. The de Bruijn graph is then traversed to determine its 

underlying genome sequence.

ATGGAAG

TACCTTC

ATGGAAG

TACCTTC

ATGGAAG

TACCTTC

ATGGAAG

TACCTTC

ATGGAAG

TACCTTC
ATGGAAG

TACCTTC
ATGGAAG

TACCTTC

ATGGAAG

TACCTTC



WHAT IS LOST IN DE BRUIJN GRAPHS?
• de Bruijn graphs do not preserve long-range positional information. 

This means that one cannot go back from the de Bruijn graph to the 
read!
• By converting a long read into a de Bruijn graph, we lose what was 

already known about that part of the genome. The loss is 
proportional to the length of the read. 
• This issue is especially troublesome for repeat DNA regions where 

long reads could help with the assembly of the genome sequence.



VARYING K-MER SIZES IN DE BRUIJN GRAPHS

• To solve the previous issue, de Bruijn assemblers will be ran 
analyses with different k-mer sizes (21, 23, 25, 27, etc.) in order to 
find the best assembly. 
• Why does the method work? Let us present an intui@ve explana@on.



VARYING K-MER SIZES IN DE BRUIJN GRAPHS

TATGGAA ATGGAAG TGGAAGT GGAAGTC GAAGTCG

ACTGGAA

CTGGAAG

GGAAGTG

GAAGTGA

Real	sequences:	ACTGGAAGTGA and	TATGGAAGTCG

• The graph can be traversed through 4 paths, but 
are they all real? 

K=7



VARYING K-MER SIZES IN DE BRUIJN GRAPHS

TATGGAA ATGGAAG TGGAAGT GGAAGTC GAAGTCG

ACTGGAA

CTGGAAG

GGAAGTG

GAAGTGA

Real	sequences:	ACTGGAAGTGA and	TATGGAAGTCG

• The original sequences were likely from non-
repeLLve regions of a genome, but they have a 
common k-mer. 

• This common k-mer made two branches overlap, 
giving the assembler 4 paths to resolve instead of 2.

K=7



VARYING K-MER SIZES IN DE BRUIJN GRAPHS

TATGGAA ATGGAAG TGGAAGT GGAAGTC GAAGTCG

ACTGGAA

CTGGAAG

GGAAGTG

GAAGTGA

Real	sequences:	ACTGGAAGTGA and	TATGGAAGTCG

• The 2 paths will separate by changing the k-mer size 
from 7 to 9. 

• Increasing k-mer size resolves many spurious 
ambiguiNes, thus making the task of the assembler 
easier.



MEMORY REQUIREMENT AND K-MER DISTRIBUTION

• Researchers trying to assemble genomes or transcriptomes from 
NGS libraries will face these two problems:

1. How to set k-mer parameters to get the best assembly.
2. How to complete the assembly within RAM limits of the 

computer.



MEMORY REQUIREMENT AND K-MER DISTRIBUTION

• If all reads are perfect (no errors), they will all match the de Bruijn 
graph of the genome sequence. 
• Irrespective of whether the genome is sequenced at 10x or 1000x 

depth, the size of the de Bruijn graph will be limited by the size of 
the underlying genome and not the volume of data.
• This means that you have to do a good job at cleaning your reads 

prior to de novo assembly to minimize the impact of errors and 
reduce RAM memory!



MEMORY REQUIREMENT AND K-MER DISTRIBUTION

However, we don’t live in a perfect world 
and all libraries have errors. 

à These errors make the assembly more 
problematic and therefore more RAM 

memory is required!



SELECTING THE BEST GENOME ASSEMBLER
• Sequencing technology: 

üShort reads are only appropriate for de Bruijn graph assemblers. 
üLong reads are beXer adapted to OLC assemblers. The Illumina 250 bp reads 

(obtained with the MiSeq pla]orm) can be analyzed with OLC assemblers 
(e.g. your cholroplast genome)   

• Genome size and complexity: 
üAll assemblers are capable of assembling simple prokaryo_c genomes.
üSome assemblers are not capable of assembling larger genomes, which may 

be due to, e.g. excessive memory requirements, or difficul_es in handling 
heterozygous polyploid genomes.

• Source of sequencing data: De novo assembly ini@ally targeted at 
genomic sequences, but it is now adapted to de novo transcriptome 
assembly and metagenomics.



 DE BRUIJN GENOME ASSEMBLERS
• VELVET: Assembler capable of producing assemblies from very 

short, early NGS reads (i.e. 25bp), but it can also handle longer 
(i.e. 454) reads to scaffold con@g sequences. High memory needs.
• SPADES: Developed for single-cell and prokaryoTc sequences. It 

incorporates an ini@al read error correc@on phase to reduce 
sequencing errors present in the input reads, before building a de 
Bruijn (u@lizing mul@ple sizes of k-mer).
• ABySS: Capable of assembling mammalian-sized genomes from 

short reads. Built around MPI paralleliza@on. It can make use of 
paired k-mers consis@ng of 2 k-mers separated by a fixed distance. 
It is equivalent to a single large k-mer spanning the length of the 
k-mer pair.



 GAP CLOSING USING LONG READS
• Sequencing biases, repetitive genomic features, genomic 

polymorphism, and other complicating factors all come together 
to make some regions difficult or impossible to assemble. 
• The best draft genomes will contain gaps and other 

imperfections. 
• Traditionally, draft genomes were upgraded to “phase 3 finished” 

using time-consuming and expensive Sanger-based manual 
finishing processes.
• An approach is implemented in PBJelly allowing to perform gap 

closing on draft genomes using long-reads from either the PacBio 
or Oxford Nanopore platforms.


