
EEB 603 – Reproducible code

Publication only Full replicationPublication
only

Publication +

Data Data & code
Linked and
executable
data & code

Not reproducible Gold standard

Learning outcomes

• Learn protocol to organize projects for reproducibility.
• Discuss licenses for code and software.
• Learn basic programming standards to ensure transparency and

broad understanding of the data workflow.
• Learn how to use R to infer data structure and files organization.
• Learn about code portability: Absolute vs. Relative paths.
• Review knowledge on documenting and managing software

dependencies.

Introduction

To make a code reproducible the following steps must be integrated:
1. Establish a reproducible project workflow.
2. Organize/structure project for reproducibility.
3. Ensure basic programming standards.
4. Document and manage dependencies.
5. Produce a reproducible report (with R Markdown).
6. Implement a version control protocol (with Git).
7. Ensure archiving and citation of code.

Introduction

To make a code reproducible the following steps must be integrated:
1. Establish a reproducible project workflow.
2. Organize/structure project for reproducibility.
3. Ensure basic programming standards.
4. Document and manage dependencies.
5. Produce a reproducible report (with R Markdown).
6. Implement a version control protocol (with Git).
7. Ensure archiving and citation of code.

Chapter 5: Reproducible code
TODAY

Chapter 1

Chapter 12: Bioinfo. tutorial

Chapter 5: Data management

Before starting
• Choose a project folder structure.
• Choose a file naming system.
• Choose a coding style.
• Install and set up a version control software (Git)

and connect to online account.

Chapter 5:
Data management

https://adv-r.hadley.nz

https://adv-r.hadley.nz/

Guidelines to ensure
best processing of data

• File formats: Data should be written in non-
proprietary formats, also known as open standard
formats (e.g. .csv, .txt, .jpeg).

• File names and folders: To keep track of data and
know how to find them, digital files and folders
should be structured and well organized. Use a
folder hierarchy that fits the structure of the
project and ensure that it is used consistently.

• File names should be:
Ø Unique,
Ø Descriptive,
Ø Succinct,
Ø Naturally ordered and consistent,
Ø Describing the project, file contents, location,

date, researcher’s initials and version.

Guidelines to ensure best processing of data
• File names should not include spaces – these can cause problems

with scripting and metadata.
• Quality assurance: Checking that data have been edited, cleaned,

verified and validated to create a reliable masterfile, which will
become the basis for further analyses
• Assurance checks may include:

ØIdentifying estimated values, missing values or double entries.
ØPerforming statistical analyses to check for questionable or impossible

values and outliers (which may just be typos from data entry).
ØChecking the format of the data for consistency across the dataset.
ØChecking the data against similar data to identify potential problems.

Before starting
• Choose a project folder structure.
• Choose a file naming system.
• Choose a coding style.
• Install and set up a version control software (Git)

and connect to online account.

Chapter 5:
Data management

https://adv-r.hadley.nz

https://adv-r.hadley.nz/

Coding style

• The foundation of writing readable code is to choose a logical and
readable coding style, and to stick to it.
• Some key elements to consider when developing a coding style are:

ØUsing meaningful file names, and numbering these if they are in a
sequence.

ØConcise and descriptive object names. Variable names should usually
be nouns and function names verbs.

ØUsing names of existing variables or functions should be avoided.

Coding style

• The foundation of writing readable code is to choose a logical and
readable coding style, and to stick to it.
• Some key elements to consider when developing a coding style are:

ØSpacing should be used to improve visual effect: use spaces around
operators (=, +, -, <-, etc.), and after commas (much like in a sentence).

ØIndentation should be with two spaces, not tabs, and definitely not a
mixture of tabs and spaces.

ØAssignment (in R). Use <-, not =, for assignment.

Principles of a good analysis workflow

• See text on website (section 6.3.6.3)

Before starting
• Choose a project folder structure.
• Choose a file naming system.
• Choose a coding style.
• Install and set up a version control software (Git)

and connect to online account.

First steps
• Create the project folder and subfolders.
• Add a README file describing the project.
• Create a version control repository for the project

and connect it to online remote repository.
• Add a LICENSE file.
• Create a new reproducible report for the project.

The simplest and most effective way of
documenting your workflow – its inputs and

outputs – is through good file system organization,
and informative, consistent naming of materials

associated with your analysis.

Before starting
• Choose a project folder structure.
• Choose a file naming system.
• Choose a coding style.
• Install and set up a version control software (Git)

and connect to online account.

First steps
• Create the project folder and subfolders.
• Add a README file describing the project.
• Create a version control repository for the project

and connect it to online remote repository.
• Add a LICENSE file.
• Create a new reproducible report for the project.

Example file structure of a simple analysis project

Before starting
• Choose a project folder structure.
• Choose a file naming system.
• Choose a coding style.
• Install and set up a version control software (Git)

and connect to online account.

First steps
• Create the project folder and subfolders.
• Add a README file describing the project.
• Create a version control repository for the project

and connect it to online remote repository.
• Add a LICENSE file.
• Create a new reproducible report for the project.

Example file structure of a simple analysis project

: contains input data (and metadata) used in the analysis
: contains the manuscript

: contains figures and tables generated by the analyses
: contains any type of intermediate or output files

: contains R scripts with function definitions
: contains RMarkdown files that document the analysis

R scripts (that actually do things) stored
in the root directory.
Note: Make sure you left-pad single digit
numbers with a zero to avoid having those
miss-ordered.

License file

• See text on website (section 6.3.6.6)

Use R to infer data structure and files
organization
• See text on website (section 6.3.6.7)

Portable code: Absolute vs. Relative paths

• An absolute path is one that gives the full address to a folder or file. A
relative path gives the location of the file from the current working
directory.
• For example based on species_data.csv stored in the Data folder

ØAbsolute path: C:/Project_ID/Data/species_data.csv
ØRelative path: Data/species_data.csv

• Using relative path and running from the project folder makes code
portable.
• In RStudio do: Session -> Set Working Directory -> To Source File

Location

Before starting
• Choose a project folder structure.
• Choose a file naming system.
• Choose a coding style.
• Install and set up a version control software (Git)

and connect to online account.

First steps
• Create the project folder and subfolders.
• Add a README file describing the project.
• Create a version control repository for the project

and connect it to online remote repository.
• Add a LICENSE file.
• Create a new reproducible report for the project.

Write reproducible code
Write pseudocode

Write code
(functions & associated scripts)

Program defensively

Comment (#)

Test

Document code
(manage dependencies & reproducible report)

Writing clear, reproducible code has (at
least) three main benefits:
1. It makes returning to the code much

easier a few months down the line.
2. Results of your analysis are more easily

scrutinized by the readers of your paper,
meaning it is easier to show their validity.

3. Having clean and reproducible code
available can encourage greater uptake
of new methods that you have
developed.

Commenting code

• How often have you revisited an old script six months down the line
and not been able to figure out what you had been doing?
• A comment is a line of code that is visible, but does not get run with

the rest of the script.
• In R and Python this is signified by beginning the line with a #.
 E.g. # Load data -----
• Comments should explain the why, not the what (we know that by

reading the code).

Writing functions

• A function is useful when you need to repeat the same task many
times!
• A function is a self-contained block of code that performs a single

action.
• A function takes in a set of arguments, applies the action, and returns

an object of any data type.
• A function should not rely on data from outside of the function, and

should not manipulate data outside of the function.

Writing functions

• How does a function look like in R?

Name <- function(argument(s)){
 some code using argument(s)
 return
}

Defensive programming: Allow debugging

• Defensive programming is a technique to ensure that code fails with
well-defined errors, i.e. where you know it should not work.
• The key is to ‘fail fast’ and ensure that the code throws an error

(meaningful to you) as soon as something unexpected happens.
• This creates a little more work for the programmer, but it makes

debugging code a lot easier at a later date.

Before starting
• Choose a project folder structure.
• Choose a file naming system.
• Choose a coding style.
• Install and set up a version control software (Git)

and connect to online account.

First steps
• Create the project folder and subfolders.
• Add a README file describing the project.
• Create a version control repository for the project

and connect it to online remote repository.
• Add a LICENSE file.
• Create a new reproducible report for the project.

Write reproducible code
Write pseudocode

Write code
(functions & associated scripts)

Program defensively

Comment (#)

Test

Document code
(manage dependencies & reproducible report)

Prepare for publication
• Record the versions of all used packages and

software (with the sessionInfo() function).
• Update README to contain details of the project

workflow, package versions, etc…
• Seek support from a colleague to check all

documentation and potential missing information.
• Correct/amend code and documentation

according to feedback from colleague.
• Make the online remote repository is public if it

was private.
• Archive the code and get a DOI for citation.
• Also archive and get DOI for associated data.

Reporting R packages & versions
R version and packages that I used to create this chapter

