
EEB 603 – Reproducible Science

INSTRUCTOR

- Name: Sven BUERKI (he/his)
- Office: Science Building (114)
- Email: svenbuerki@boisestate.edu
- Office hours: By appointment

CLASS MEETINGS

- Weekdays and times: Tuesday Thursday 9-10:15 AM.
- Location: In-person in <u>Science</u> <u>Bldg, Rm 149</u>
- Encouraged to bring your personal computer.

TEACHING & RESEARCH ETHOS

• Everyone here is smart; distinguish yourself by being kind.

Kindness in Science is an inclusive approach that fosters diversity, respect, wellbeing & openness leading to better science outcomes.

https://doi.org/10.1038/d41586-018-00482-y

Round of introductions

- Who am I?
- What program am I in?
- What do I want to take away from this course?

WHY THIS CLASS?

Based on a survey published in *Nature* (2016), 90% of the respondents said that **there is a reproducibility crisis in Science!**

https://doi.org/10.1038/533452a

IS THERE A **Reproducibility Crisis**?

A Nature survey lifts the lid on how researchers view the 'crisis' rocking science and what they think will help.

BY MONYA BAKER

52% Yes, a significant 38% Yes, a slight

3% No, there is no crisis

Retraction Watch

Tracking retractions as a window into the scientific process

https://retractionwatch.com/

PAGES

How you can support Retraction Watch

Meet the Retraction Watch staff

About Adam Marcus

About Ivan Oransky

Our Editorial Independence Policy

Papers that cite Retraction Watch

Privacy policy

Retracted coronavirus (COVID-19) papers

Retraction Watch Database User Guide

Retraction Watch Database User Guide Appendix A: Fields

Retracted coronavirus (COVID-
19) papersFall 2023: 359 papers retracted

via CDC

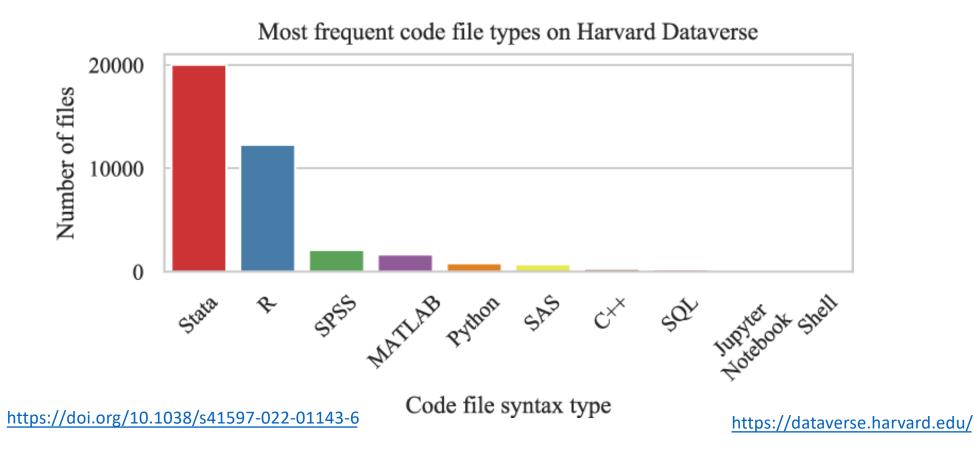
REPRODUCING CODE IS

ALSO AN ISSUE

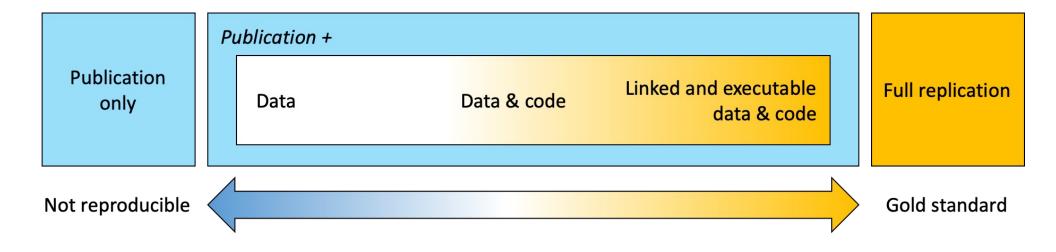
Analysis Open Access Published: 21 February 2022

A large-scale study on research code quality and execution

Ana Trisovic 🖂, Matthew K. Lau, Thomas Pasquier & Mercè Crosas


Scientific Data 9, Article number: 60 (2022) | Cite this article 9542 Accesses | 5 Citations | 164 Altmetric | Metrics

Abstract


This article presents a study on the quality and execution of research code from publiclyavailable replication datasets at the Harvard Dataverse repository. Research code is typically created by a group of scientists and published together with academic papers to facilitate research transparency and reproducibility. For this study, we define ten questions to address <u>aspects impacting research reproducibility and reuse</u>. First, we retrieve and analyze more than 2000 replication datasets with over 9000 unique R files published from 2010 to 2020. Second, we execute the code in a clean runtime environment to assess its ease of reuse. Common coding errors were identified, and some of them were solved with automatic code cleaning to aid code execution. We find that 74% of R files failed to complete without error in the initial execution, while 56% failed when code cleaning was applied, showing that many errors can be prevented with good coding practices. We also analyze the replication datasets from journals' collections and discuss the impact of the journal policy strictness on the code re-execution rate. Finally, based on our results, we propose a set of recommendations for code dissemination aimed at researchers, journals, and repositories.

https://dataverse.harvard.edu/

R IS AMONG TOP COMPUTING LANGUAGES USED AND IT IS OPEN SOURCE AND FREE

WHY SUCH CRISIS? THE REPRODUCIBILITY SPECTRUM

THE REPRODUCIBILITY SPECTRUM


Research is often presented in the form of publications. These documents announce a project's findings, but they are not the research, they are the advertisement part of the research project!

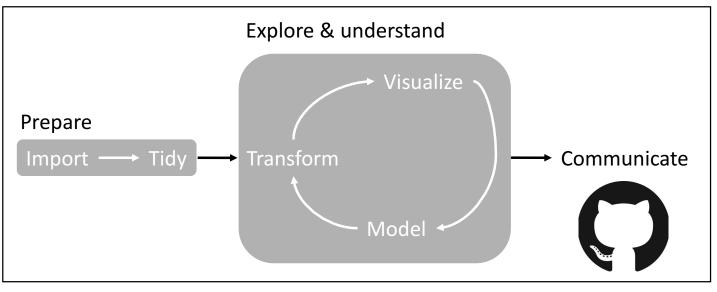
Publication only	Publication +					
		Data	Data & code	Linked and executable data & code		Full replication
Not reproducible		[>	Gold standard

THE REPRODUCIBILITY SPECTRUM

When research (data, code) is separated from its advertisement (publication), it becomes challenging for others to reproduce findings. But this can be solved by...

Code: Covering procedures in the wet and dry labs.

Examples of reproducible science


https://www.science.org/doi/10.1126/science.354.6308.142

https://svenbuerki.github.io/EEB603_Reproducible_Science/index.html#8_Examples_of_reproducible_science

AIM OF THE COURSE

To provide students with key theoretical and practical **knowledge to gather, store, share, prepare and analyze data as well as communicate results to the scientific community**

Program

STRUCTURE OF THE COURSE

The class is subdivided into three parts:

• PART 1: The Big Picture

Output: key theoretical knowledge allowing students to successfully <u>implement</u> a reproducible approach.

• PART 2: Bioinformatics for Reproducible Science

Output: learn and apply bioinformatic tools required to implement a reproducible workflow. This will be done by using the computing environment implemented in RStudio.

• PART 3: Apply a Reproducible Approach to your Data

Output: develop individual reproducible workflows tailored to thesis project or to data presented in a publication.

CONTENT OF THE COURSE & TIMETABLE

PART 1: The Big Picture

1. Introduction: The reproducibility crisis & prospects to tackle it!

- · Chapter 1: Introduction to R, RStudio, Markdown (incl. referencing) & User-defined functions.
- Chapter 2: The reproducibility crisis.
- Chapter 3: A road map to implement reproducible science in Ecology & Evolution.
- Chapter 4: Open science and CARE principles.

2. Getting started: Overview of data workflow & used software

- Chapter 5: Data management, Reproducible code.
- Chapter 6: Getting published & Peer review.

PART 2: Bioinformatics for Reproducible Science

3. Prepare your data

- Chapter 7: Organize and import data with R.
- Chapter 8: Prepare/tidy data for analyses in R.

4. Explore & understand your data

- Chapter 9: Statistical modelling and knitr.
- Chapter 10: Visualize results with Tables.
- $\circ~$ Chapter 11: Visualize results with Figures (incl. handling phylogenetic trees).

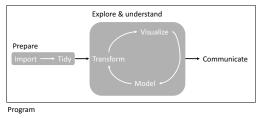
5. Communicate/Disseminate your results

 Chapter 12: Git & GitHub: What are those and how can they help you with your code and communicating your research?

PART 3: Apply a Reproducible Approach to your Data

6. Students develop and present reproducible workflows applied to their project

- Produce individual reports showcasing reproducible workflows tailored to thesis projects.
- Oral presentations of individual students' projects.


Learning the fundamentals:

Split sessions between:

- Lectures & group discussions
- Students work on tutorials

Bioinformatic labs:

Students design and teach tutorials

Individual projects: Students produce reproducible workflows tailored to their data

COURSE MATERIAL & RESOURCES

→ C svenbuerki.github.io/EEB603_Reproducible_Science/index.html

Reproducible Science Home

Timetable Chapters Resources

1 Instructor

 \leftarrow

2 Our class ethos

3 Class details

- 4 Course goal & description
- 5 Structure of the course
- 6 Shared Google Drive
- 7 Publications & Textbooks

8 The computing tools of reproducible science

9 RStudio Cheat Sheets: A gold mine to design your bioinformatic tutorials

10 R tutorials

11 Assessments

12 Late work policy

13 Engagement expectations

14 What you can expect of me

15 This course was designed with you in mind

16 Academic integrity

17 Student well-being

18 References

19 Appendix 1

EEB 603 – Reproducible Science

Syllabus Sven Buerki - Boise State University

2022-08-16

1 Instructor

- · Name: Sven Buerki
- Office: Science building, office 114 (ground floor).
- Email: svenbuerki@boisestate.edu
- Office hours: By appointment.

2 Our class ethos

Everyone here is smart; distinguish yourself by being kind.

 Kindness in Science is an inclusive approach that fosters diversity, respect, wellbeing & openness leading to better science outcomes.

ាំ 🛣

Download pdf version Raw data on GitHub

https://github.com/svenbuerki/EE B603 Reproducible Science

The second secon

See class website for full list

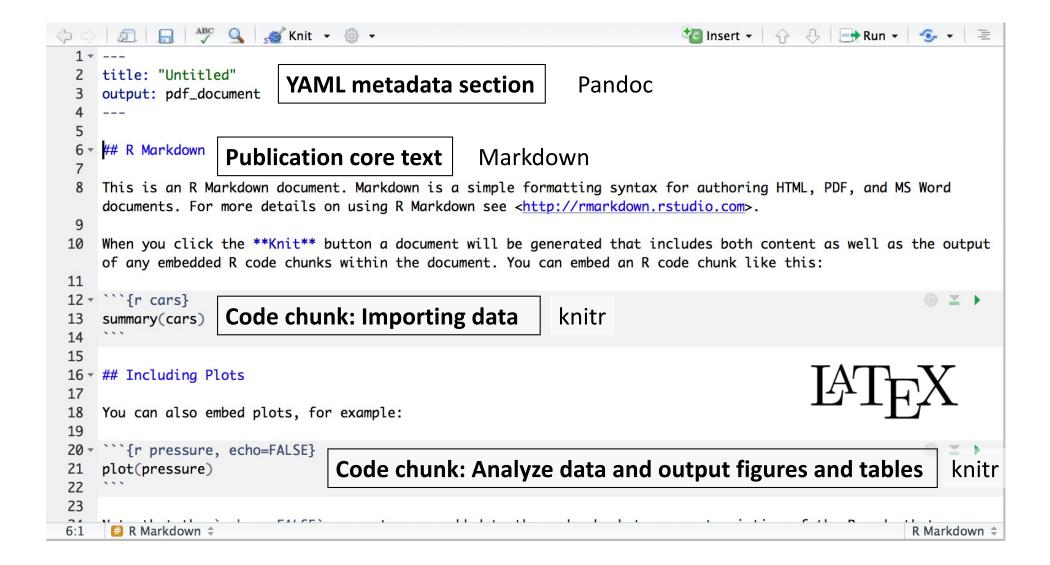
Hadley Wickham & Garrett Grolemund

PUBLICATIONS & TEXTBOOKS https://bookdown.org/ Conners The R Series O'REILLY' **Reproducible Research** with R and RStudio Second Edition R for Data Science IMPORT, TIDY, TRANSFORM, VISUALIZE, AND MODEL DATA **Christopher Gandrud** CRC Press A CHAPMAN & HALL BOOK Copyrighted Material **Copyrighted Material**

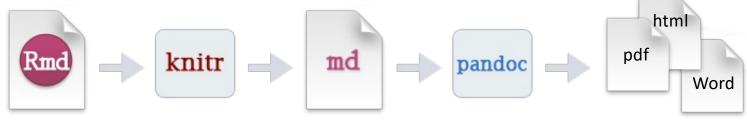
BIOINFORMATIC TOOLS

The main bioinformatic tools covered in this class are:

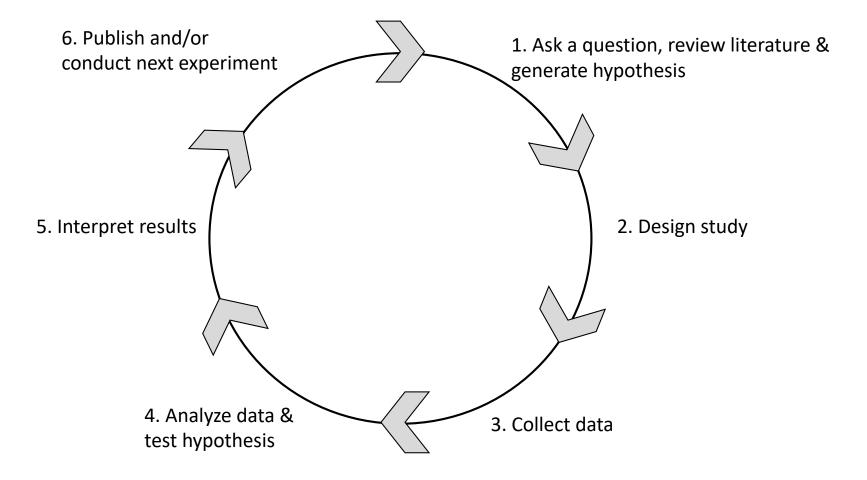
- R statistical language: gather and analyze data.
- Markdown markup language: create documents (slideshows, articles, books, webpages) for presenting your findings.
- knitr and rmarkdown R packages: dynamically tiding, gathering, analyzing, and presenting your data into one document. This is the core of the process allowing data reproducibility. Several additional R packages will be required for this course.
- RStudio: framework implementing all tools in one place.

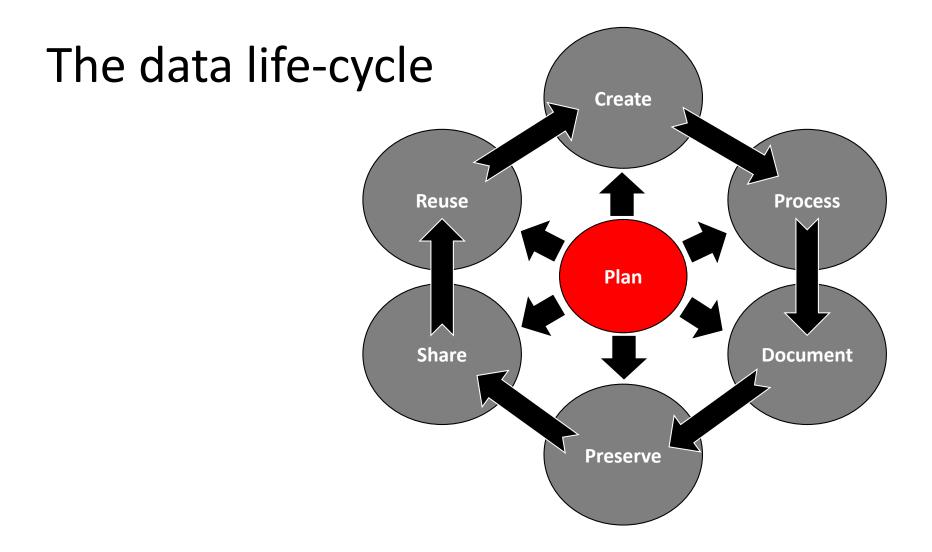

R MARKDOWN: THE GOLD STANDARD FOR REPRODUCIBLE SCIENCE

This workflow integrates 4 programming languages:


- 1. R (interpreted by *knitr*)
- 2. Markdown (rmarkdown)
- 3. YAML¹ (interpreted by Pandoc²)
- 4. LaTeX (only if output is pdf)

¹YAML (YAML Ain't Markup Language) is a human friendly data serialization standard for all programming languages. ² If you need to convert files from one markup format into another, Pandoc is your swiss-army knife.




R MARKDOWN WORKFLOW

Executes code chunks and creates new markdown document including code and outputs Responsible for creating the finished format and converting into final format

Data dissemination & Open Science

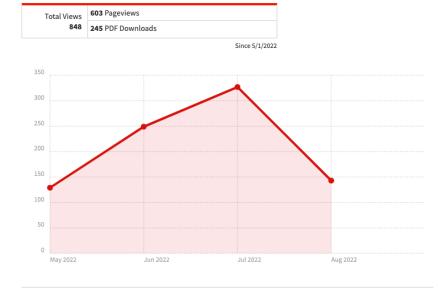
https://www.nature.com/articles/s41597-021-00892-0

Data dissemination & Open Science

Open Access

Editors-in-Chief: Allen Moore, University of Georgia, USA; Andrew Beckerman, University of Sheffield, UK; Marcus Lashley, University of Florida, USA; Chris Foote, John Wiley & Sons, UK; Gareth Jenkins, John Wiley & Sons, UK, and Zhaoxue Ma (Zoe Ma), John Wiley & Sons, Shanghai

Online ISSN: 2045-7758


© John Wiley & Sons Ltd

All articles accepted from 14 August 2012 are published under the terms of the <u>Creative Commons Attribution License</u>. All articles accepted before this date, were published under a <u>Creative Commons Attribution Non-Commercial License</u>.

https://creativecommons.org/licenses/by/4.0/

Changing our perspective on research impact

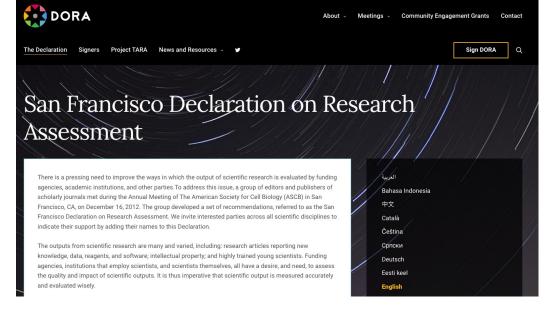
Metrics beyond impact factor

Citations

"

Ð

 $\mathbf{\hat{x}}$


ж.

Altmetrics

Powered by Dimensions

CLASS ASSESSMENTS

- Students will be graded based on the following four tasks:
 - **1. Produce a bioinformatics tutorial** focusing on a chapter from PART 2 (150 points).
 - 2. Teach a bioinformatics lab (spread across <u>2 sessions</u>) (100 points).
 - **3.** Produce an individual report on thesis project/publication (200 points).
 - 4. One oral presentation on thesis project/publication (100 points).
- TOTAL: **550 points** (see Syllabus for grading scale).

BIOINFORMATIC TUTORIAL (150 POINTS)

- Students will be working in groups (or alone) and assigned a chapter of PART 2 to produce a bioinformatic tutorial.
- Tutorials have to:
 - ✓ Be written in R Markdown as implemented in RStudio (Chapter 1).
 - ✓ Focus on developing a suite of exercises aiming at gaining key bioinformatic skills specific to each chapter.
 - ✓ Be submitted to the instructor 1 week in advance for correction and then uploaded onto the Google Drive (see Timetable).
- Instructor will provide an introduction to R Markdown (Chap. 1) and allocate time to get accustomed to markup language and RStudio.
- See Syllabus for list of relevant publications and textbooks to develop tutorials.

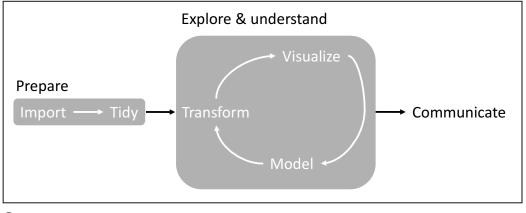
BIOINFORMATIC TUTORIAL (150 POINTS)

- Tutorials should include:
 - \checkmark A short introduction highlighting the theory and aims of the tutorial.
 - ✓ A section on R package requirements with instructions on how to install those and their dependencies (see Syllabus).
 - ✓ A section introducing the data (dataset) used to support these exercises (and how to download those).
 - \checkmark A references section and links to manuals of R packages.
 - ✓ Commented R code necessary to guide users through the exercises as well as some knowledge on expected outputs (more details on this topic in Chapters 5 & 6).

TEACHING BIOINFORMATIC TUTORIAL (100 POINTS)

- Students prepare 10-20 minutes presentations providing general guidelines to complete tutorials.
- Students should support their peers in completing tutorials (by e.g. answering questions).
- Instructor will also be circulating in class and answering questions, but students are leading the teaching of the bioinformatic labs.
- Students will be graded according to their abilities to teach their tutorials and answer questions. The instructor might also use student's feedback to grade this test.

INDIVIDUAL REPORT (200 POINTS)


- Students work alongside instructor to develop reproducible workflows specific to their thesis projects.
- In cases where students don't yet have a clear idea on their thesis project, they will work with instructor to identify a publication that can serve as basis for their individual project.
- Reports are written in RStudio (same as tutorial) and should include a list of references. This latter aims at supporting methodological decisions taken in the report and increasing transparency.

INDIVIDUAL REPORT (200 POINTS)

- Students investigate the following *prior* elements:
 - ✓ What kind of data are already published/available (and which of those are relevant to your topic)?
 - ✓Where are those published data deposited?
 - ✓ Can you reproduce the analyses based on published data?
 - ✓ What types of data are or will be produced during your thesis project?
 - ✓ What are the specificity of your data (in term of storage, sharing, etc.)?
 - \checkmark What are the publication standards in your field?

INDIVIDUAL REPORT (200 POINTS)

- Students develop the following core processes:
 - ✓A data management plan specific to your research covering the following stages of the data life cycle: Create, Process, Document, Preserve, Share and Reuse.
 - ✓ A reproducible code to perform the following tasks to your data:

Program

PRESENTATION: INDIVIDUAL REPORT (100 POINTS)

- When: Final week
- How: Prepare 9-minute presentations (TBD).
- 5 minutes are devoted to questions and 1 minute for transitioning to the next speaker (see next slide for speaker order and dates).
- Students are not required to upload their presentations on Google Drive (**BUT** students will have to upload their reports in Personal_reports folder).
- Students can directly use output created by RMarkdown (e.g. the HTML page) for their oral presentations or prepare slides with Powerpoint or Google Slides.

PRESENTATION: INDIVIDUAL REPORT (100 POINTS)

- Students have "carte blanche" to prepare the content of their presentations, but they should cover the following aspects:
 - \checkmark What is the general context of the study.
 - \checkmark What is the central scientific question.
 - ✓What are your objectives and if possible working hypothesis.
- You are encouraged to talk about the challenges that you are facing to make your study reproducible and transparent.